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Abstract

This study is concerned with the identification of fuzzy models. To address the optimization of fuzzy model, we

proposed an improved space search evolutionary algorithm (ISSA) which is realized with the combination of space

search algorithm and Gaussian mutation. The proposed ISSA is exploited here as the optimization vehicle for the

design of fuzzy models. Considering the design of fuzzy models, we developed a hybrid identification method using

information granulation and the ISSA. Information granules are treated as collections of objects (e.g. data) brought

together by the criteria of proximity, similarity, or functionality. The overall hybrid identification comes in the form of

two optimization mechanisms: structure identification and parameter identification. The structure identification is

supported by the ISSA and C-Means while the parameter estimation is realized via the ISSA and weighted least

square error method. A suite of comparative studies show that the proposed model leads to better performance in

comparison with some existing models.
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1. Introduction

Fuzzy modeling may be considered as a system

based on fuzzy logic with fuzzy predicates and it is

widely used in many application fields. Lots of

pioneering works such as Tong et. al [1], Xu et. al

[2] and Pedrycz [3] have studied different problems

for fuzzy modeling. When designing a fuzzy models,

identifying “good” initial parameters of the fuzzy rules

is an important problem. In [4] Oh presented that

using genetic algorithm and a concept of Information

granulation (IG) to develop fuzzy inference systems. In

our previous study [5-8], we proposed a space search

algorithm (SSA) and used it as a vehicle to finding

the parameters of fuzzy rules. Here we present an

improved space search algorithm (ISSA) by means of

gaussian mutation [9]. A hybrid optimization of fuzzy

inference systems based on the improved space search

algorithm (ISSA) and information granulation (IG) is

constructed. ISSA is exploited here to carry out the

parameter estimation of the fuzzy models as well as

to realize structural optimization. The identification

process is comprised of two phases, namely a

structural optimization and parametric optimization.

The ISSA and the weighted least square method

(WLSE) are used in each phase of this sequence.

Information granulation is realized with the aid of

HCM, ISSA and WLSE. Hard Clustering Method

(HCM) is used to help determine the initial parameters

of the fuzzy model such as the initial location of

apexes of the membership functions and the

prototypes of the polynomial functions being used in

the premise and consequence parts of the fuzzy rules,

while ISSA and WLSE are employed to adjust the

initial values of the parameters. The evaluation of the

performance of the proposed model is carried out by

using two well-known data sets. To demonstrate the

performance of ISSA, we compared it with some

existing fuzzy models reported in the literature.

2. Improved space search algorithm

The SSA is a heuristic algorithm whose search

method comes with the analysis of the solution space.

In essence, the solution space is the set of all feasible

solutions for the optimization problem (or
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mathematical programming problem), which is stated

as the problem of determining the best solution

coming from the solution space. In SSA, the search

method is based on the operator of space search,

which generates two basic steps: generate a new

subspace and search the new space. Search in the

new space is realized by randomly generating a new

solution located in this space. Regarding the

generation of the new space, we consider two cases:

(a) space search based on M selected solutions, and

(b) space search based on one selected solution.

In Case I, the new subspace is generated by M

selected solutions. For convenience, a solution  can

be presented in another way   ⋯  , where

 is the index of the dimension. Regarding the 
solutions, we use the following representations:

   


⋯ 
  ,     ⋯  . We generate the

new space  based on the following expression:

   
   

  




∪ ∈

 
  



     ≤  ≤ 

(1)

In Case II, the space search operation is based on a

given solution. In this case, the given solution is the

best solution in the current solution set. Assume that

we randomly select  is an integer of [1, n]. The new

space  is generated based on the following

expression:

  
  

 ⋯ 
 

  

≠ ∪
 ∈   (2)

In the ISSA, the operator of case I is the same as

SSA. However, a new operator is employed in case II.

The expression that generates a new solution is as

follows:

   ⋯ 
  ⋯

 
   

  

(3)

  exp





 (4)

where  is a coefficient,  and  are

random real numbers generated by the normal

distribution, respectively. The initial value of  is set

as 3.0.

3. Design of the IG-based fuzzy models

Considering the identification of fuzzy models, we

realized the structure identification as well as parameter

identification. The structure identification is supported by

the ISSA and C-means while the parameter estimation is

realized via the ISSA and weighted least square error

method. IG is aimed at transforming the problem at hand

into several smaller and therefore more manageable tasks.

In this study granulation of information is aimed at

transforming the problem at hand into several smaller

and therefore more manageable tasks. In this way, we

partition the task into a series of well-defined

subproblems (modules) of far lower computational

complexity than the original one. The identification

procedure for fuzzy models is split into the

identification activities dealing with the development of

the premise and the consequence part of rules. The

identification completed at the premise level consists

of two main steps. First, we select the input variables

x1,x2,…, xk of the rules. Second, we form fuzzy

partitions (by specifying fuzzy sets of well-defined

semantics such as e.g., Low, High, etc.) of the spaces

over which these individual variables are defined. In

such a sense, this phase is all about information

granulation as the elements of the fuzzy partitions we

are interested in when developing any rule-based

model. The number of the fuzzy sets constructed there

implies directly the number of the rules of the model

itself. In addition, one has to determine membership

functions of the information granules.

The identification of the premise part is completed

in the following manner.

Given is a set of data   ⋯, where

  ⋯   ⋯  , where  l is the

number of variables and m is the number of data.

[Step 1] Arrange a set of data  into data set 

composed of the corresponding input and output data.

   (5)

[Step 2] Run the K-Means to determine the centers

(prototypes)  within the data set  .

[Step 2-1] Arrange data set  into c-clusters (in

essence this is effectively the granulation of

information)

[Step 2-2] Calculate the centers  of each cluster.

  ⋯ (6)

[Step 3] Partition the corresponding input space

using the prototypes of the clusters . Associate

each cluster with some meaning (semantics), say

Small, Large, etc.

[Step 4] Set the initial apexes of the membership

functions using the prototypes .

The identification of the conclusion parts of the

rules deals with a selection of their structure (type 1,

type 2, type 3 and type 4) that is followed by the



한국지능시스템학회 논문지 2011, Vol. 21, No. 6

688

determination of the respective parameters of the local

functions occurring there. The conclusion part of the

rule that is extended form of a typical fuzzy rule in

the TSK (Takagi-Sugeno-Kang) fuzzy model has the

form.

     and⋯ and          (7)

Type 1 (Simplified Inference):

   (8)

Type 2 (Linear Inference):

      ⋯   (9)

Type 3 (Quadratic Inference):

        ⋯          
 

       ⋯

        

(10)

Type 4 (Modified Quadratic Inference):

      ⋯  

     ⋯
    

(11)

The optimal coefficients of the model is estimated

through the minimization of the objective function 

  
  




  



 xkvi (12)

Where  is the normalized firing strength

(activation level) of the i th rule.

The performance index  can be rearranged as

  
  



  
 

 
  




  




  


(13)

Where  is the vector of coefficients of ith

consequent polynomial (local model),  is the vector

of output data,  is the diagonal matrix (weighting

factor matrix) which represents degree of activation of

the individual information granules by the input data.

 is a matrix which is formed with input data and

information granules (centers of cluster). In case the

consequent polynomial is Type 2 (linear or a

first-order polynomial),  and  read as follows

 











  ⋯ 

  ⋯ 
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∈ ×  (14)
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   ⋯   

(15)

    ⋯   (16)

For the local learning algorithm, the objective

function is defined as a linear combination of the

squared error, which is a difference between output

data and the result produced each fuzzy rule when

considering the weighting factor matrix  . This

matrix captures the activation levels of input data

with respect to ith sub-space. In this sense we can

consider the weighting factor matrix as a discrete

version of the fuzzy (linguistic) representation for the

corresponding sub-space.

The optimal coefficients of the consequent

polynomial of the ith fuzzy rule can be determined in

a usual manner that is

  



 (17)

Notice that the coefficients of the consequent

polynomial of each fuzzy rule have been computed

independently using a subset of training data. These

computations can be implemented in parallel and in

this case the overall computing load becomes

unaffected by the total number of the rules.

The proposed ISSA is exploited here to optimize the

fuzzy models. Figure 1 depicts the arrangement of

chromosomes. Genes for structural optimization are linked

up with genes used for parametric optimization. The size

of the chromosomes for structural optimization of the

IG-based fuzzy model is determined according to the

number of all input variables of the system. The size of

the chromosomes for parametric optimization depends on

structurally optimized fuzzy inference system. When

constructing fuzzy models, we simultaneously realize

the structural as well as parametric optimization of

the model.

(a) Arrangement of solutions
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(b) An example of the first part (for structural

optimization)

(c) An example of the second part (for parametric

optimization).

Fig. 1. Arrangement of the chromosome in ISSA

Fig. 1 depicts the arrangement of solutions in the

SSA-based sequential tuning method. The first part

for structural optimization is separated from the

second part used for parametric optimization. The size

of the solutions for structural optimization of the

IG-based fuzzy model is determined according to the

number of all input variables of the system. The size

of the solutions for parametric optimization depends on

structurally optimized fuzzy inference system. In a

nutshell, from the viewpoint of structure identification,

only one fixed parameter set, which is the assigned

apexes of membership functions obtained by C-Means

clustering, is considered to carry out the overall

structural optimization of fuzzy model. From the

viewpoint of parameter identification, only one

structurally optimized model that is obtained during

the structure identification is considered to be involved

in the overall parametric optimization. We

simultaneously realize the structural as well as parametric

optimization of the model. The second part for parametric

identification is linked up with the first part for structure

identification within a solution (an individual). The size

and arrangement of the first part for structure

identification is the same as those in the sequential

tuning method, while the size of the second part for

parameter identification is determined by considering both

the number of the system’s input variables and the

number of the membership functions being used in their

representation. A stochastic variable (a variant

identification ratio) used within a modified simple search

space operator in the ISSA is used support an efficient

successive tuning embracing both the structural as well

as parametric optimization of the model. During the initial

generations of the ISSA, the space search operator is

assigned with higher probability to the solution region

involving the first part responsible for structural

optimization. This probability becomes lower when dealing

with a region of the solution involving the second part

responsible for parametric optimization. In this manner,

the optimization becomes mostly focused on the structural

optimization. Over the course of the space search

optimization (for higher generations), the probability that

the first part can be generated (assigned) within the

second part responsible for parameter optimization

gradually increases. In this sense, the optimization of the

IG-based fuzzy set model becomes predominantly focused

on the parametric optimization. The second part related to

the parameter optimization of model is serially connected

with the first part related to the structural optimization of

model. Therefore the “simultaneous topology/parameter

search” is carried out for optimization, and the successive

tuning method enables us to consider much more

extensive topology/parameter search space for

optimization.

The space search operator in the ISSA for the

successive tuning method being realized with the aid

of a variant identification ratio is implemented. Their

essential parameters such as gen, maxgen, and l are

given. Here, gen is an index of the current generation,

maxgen stands for the maximal number of generations

being used in the algorithm, and l serves as some

adjustment coefficient whose values can determine a

variant identification ratio (p) for both structural and

parametric optimization. The detailed space search

operator in the SSA algorithm is presented as follows:

While { the termination conditions are not met }

Select M solutions (parent individuals) from the

current solution set, where M is a given number.

Generate random variable (r1).

Calculate a variant identification ratio (p) which is a

generation-based stochastic variable of the form

 

  ≥ max
(18)

IF {p > 0.5}
Search solution space within the first part of
solutions for structural optimization.

Else
Search solution space within the second part of
solutions for parametric optimization.

End IF
Complete the space search operation.

End while

The objective function (performance index) is

regarded as a basic mechanism guiding the

evolutionary search carried out in the solution space

of potential solutions. The objective function involves
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both the training and testing data and comes as a

convex combination of these two components




  ×  × 


 (19)

Here, PI and E_PI denote the performance index for

the training data and testing (validation) data,

respectively.  is a weighting factor that allows us to

form a sound balance between the performance of the

model for the training and testing data. Depending

upon the values of the weighting factor, several

specific cases of the objective function are worth

distinguishing.

(i) If    then the model is optimized based on

the training data. No testing data is taken into

consideration.

(ii) If    then both the training and testing

data are taken into account. Moreover it is assumed

that they exhibit the same impact on the performance

of the model.

(iii) The case    where ∈  embraces

both the cases stated above. The choice of 

establishes a certain tradeoff between the

approximation and generalization aspects of the fuzzy

model.

Here we use performance index of the standard root

mean squared error (RMSE) and mean squared error

(MSE)

or 














 
  



 
  



 
  



 




(20)

4. Experimental studies

This section reports on comprehensive numeric

studies illustrating the design of the fuzzy model. We

use two well-known data sets. Each data set is

divided into two parts of the same size. PI denotes

the performance index for the training data and E_PI

stands for the testing data. In all considerations, the

weighting factor  was set to 0.5.

4.1 NOx emission process data

NOx emission process of a GE gas turbine power

plant located in Virginia, USA, is chosen in this

experiment. The input variables include AT (ambient

temperature a site), CS (compressor speed), LPTS

(low pressure turbine speed), CDP (compressor

discharge pressure), and TET (turbine exhaust

temperature). The output variable is NOx. We

consider 260 pairs of the original input-output data.

130 out of 260 pairs of input-output data are used as

the learning set; the remaining part serves as a

testing set. The identification error of the proposed

model is compared with the performance of some

other models; refer to Table 1. It is clear that the

proposed model outperforms several previous fuzzy

models known in the literature.

Table 1. Comparative analysis of selected models

(NOx)

Model PI E_PI
No. of

rules

Regression model 17.68 19.23

Hybrid FS-FNNs [10] 2.806 5.164

Hybrid FR-FNNs [11] 0.080 0.190

Multi-FNN[12] 0.720 2.205

Hybrid rule-based FNNs[13] 3.725 5.291

SOFPNN [14] 0.012 0.094

Choi’s model [10] 0.012 0.067 18

Our model

GA 0.019 0.132 16

SSA[5] 0.004 0.019 16

ISSA 0.003 0.003 16

4.2 Automobile Miles Per Gallon (MPG) Data

The first dataset is an automobile MPG data

(ftp://ics.uci.edu/pub/machine-learning-databased/auto-

mpg) with the output being the automobile’s fuel

consumption expressed in miles per gallon. The data

set includes 392 input-output pairs (after removing

incomplete instances) where the input space involves 8

input variables. To come up with a quantitative

evaluation of the fuzzy model, we use the standard

RMSE performance index.

The automobile MPG data is partitioned into two

separate parts. The first 235 data pairs are used as

the training data set for IG-based FIS while the

remaining 157 pairs are the testing data set for

assessing the predictive performance. The identification

error of the proposed model is compared with the

performance of some other model; refer to Table 7.

The selected values of the performance indexes of the

IG-FIS are marked in Table 5 and Table 6,

respectively. It is easy to see that the performance of

the proposed model is better in the sense of its

approximation and prediction abilities.

Table 2. Comparative analysis of selected models

(MPG)

Model
PI

(RMSE)

E_PI

(RMSE)

No. of

rules

RBFNN [15] 3.24 3.62 36

Linguistic model

[16]
2.86 3.24 36

Functional

RBFNN[25]
2.41 2.82 33

Our

model

GA 2.97 2.89 8

SSA[5] 2.74 2.88 8

ISSA 2.67 2.31 8
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5. Conclusions

This paper introduced a hybrid identification of

fuzzy models by means of an ISSA and IG.

Experimental results show that ISSA-based model

lead to better performance than some other fuzzy

models reported in the literature.
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