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This paper discusses models for estimating dynamic travel times based on probability theory. The

dynamic travel time models proposed in the paper are formulated assuming that the travel time of

a vehicle depends on the distribution of the traffic stream condition with respect to the location
along a road when the subject vehicle enters the starting point of a travel distance or with respect

to the time at the starting point of a travel distance. The models also assume that the dynamic

traffic flow can be represented as an exponential distribution function among other types of

probability density functions.
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I . Introduction

Dynamic travel times are essential for the
study of traffic because they are a critical issue
in transportation engineering. In static traffic,
travel times are not an issue because they are
constant over time in traversing a given
distance, and they are linearly proportional to
travel distance. Under dynamic traffic conditions,
travel times in traversing a given distance vary
over time and are not linearly proportional to
travel distance because the state of the traffic
stream condition, which is assumed to determine
the vehicles' travel times, varies over both
location and time.

This paper derives dynamic travel time
models through a probability approach. In this
paper, dynamic travel time models are obtained
by considering the distribution of the traffic
stream condition with respect to either location
along a road when the subject vehicle enters the
starting point of a travel distance or with
respect to time at the starting point of a travel

distance.

1. A Simplified Kinematic Wave Theory

The most widely used macroscopic traffic flow
model, which is known as the LWR model, was
proposed by Lighthill and Whitman (1955) and
Richards (1956). The key point of the LWR
modelis that there is a functional relation
between flow 7 and density 4 The LWR model
can be described by two conditions: the
conservation equation and function relating flow

9 and density £ as

%_‘_aiqz()’

or  ox and q = f(k(x,1),x) 1)

where x and ¢ represent location and time,
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(Figure 1) A flow-density curve

respectively and fis a function relating flow ¢

and density 4 which is referred to as ‘a
flow-density curve (see (Figure 1)).

Newell (1993abc) simplified the LWR kinematic
wave theory after identifying its serious
deficiency, where the relation between flow ¢
and density & is not valid under dynamic traffic
conditions. At low density, a “desired speed
nearly independent of the average spacing is
observed, and at high density, the relation
between speed and density is unstable, resulting
in “stop-and-go traffic.” In order to avoid
mathematical complications, he simplified the
density-flow relation, which is typical of
freeway traffic, to a triangular-shaped curve
with only two wave speeds: one for free-flowing
traffic (positive) and the other for congested
traffic (negative). This method easily evaluates
physical queue propagations. As shown in
(Figure 2, the density-speed relation is drawn
using only two wave speeds, a constant
free-flow speed # for low density and a constant
backward shockwave speed —u’ for high density.
(2000)
sponsored by the National Cooperative Highway
(NCHRP)

flow-speed relation at low density, as shown in

The Highway Capacity Manual
adapted a

Research  Program

(Figure 3), which is typical of multi-lane

highway and basic freeway traffic, based on a
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(Figure 2) A simplified kinematic wave theory
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v

(Figure 3) Flow-speed relation on HCM

major data collection and analysis effort.
Thepattern of the density-speed relation at low
density is the same as the simplified kinematic
wave theory proposed by Netwell (1993abc). In
fact, speed u at low density is constant

regardless of density u .

2. Whole-Link Travel Time Models

Friesz et al. (1993) introduced a whole-link
travel time model, in which the link travel time
of a vehicle entering a link at time # is taken as
a linear function of the number of vehicles on a
link at time t. This model has been widely used
in mathematical programming models for dynamic
traffic assignments, which simulate the
interaction between a driver's route choice
pattern and network performance. Friesz et al.
(1993) employed the following linear link travel
time model for the use of a dynamic traffic

assignment in a network model:

w(t)=a+b-n(t) (2)
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where ©™)is the link travel time of a vehicle
entering a link at time t, @ and b are constants,
and ") is the number of vehicles on a link at
time t. Equation (2) describes a fixed travel
time ‘a plus a congestion related travel time
delay "b-n(@)

The non-linear version of whole-link travel
time models has been proposed by Astarita
(1995,1996), Wu et al. (1998), Xu et al.
(1999), Zhu and Marcotte (2000), and Carey
and McCartney (2002). Non-linear whole-link
travel time models have a general form where
link travel times are a function of the number of

vehicles on a link, as given below:

(1) = f(n(1)) (3)

Furthermore, whole-link travel time models
areexpressed as a function of whole-link
variables, such as inflows, outflows, or the
number of vehicles on a link (Ran et al., 1993).
Carey et al. (2003) introducedanother whole-
link travel time model where the travel time of
a vehicle entering a link is taken as a function
of a weighted average of the inflow rate when a
user enters a link and the outflow rate when
the same vehicle exits from a link. Various
whole-link travel time models have been
proposed. However, whole-link travel time
modelscause unreliable results for estimating
link travel times such as violation of first-
(FIFO)
Daganzo (1995) argues, they have not taken

in—first-out’ discipline because as

into account the distribution of vehicles with

respect to location along a link.
Il. Instantaneous Travel Times
The space-based instantaneous travel time is

defined as the time a vehicletakes to traverse a

distance, assuming that the traffic stream
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condition along a road does not change during
its travel. The space-based instantaneous travel

time has the following form:

1
>
w0 (4)

TN (x1,0) = f !

where " (%) is the instantaneous travel time
of a vehicle entering the starting point of a
travel distance at location x and time ¢ in
traversing a distance I, u(x,.) is the speed, Vv
is the location variable, and ¢ is the entry time
when the subject vehicle enters the starting
point x of a travel distance.

The space-based instantaneous travel time
can be explained as follows. As an expected
value is calculated by integrating the product of
a variable and the probability density function
(pdf), the space-based instantaneous travel
time (expected value) is obtained by integrating
the product of the traffic stream condition which
is represented by a form of travel time !//u(%,.7)
along a road and the pdf J %) which is
defined as the degree to which the differential
elements of the traffic stream condition #/#(x,.1)
affect the travel time of a vehicle traversing a
distance /. In the space-based instantaneous
travel time model, the pdf /%) is uniformly
distributed from the starting point of a travel

distance x to its end x+/ as shown in equation

(5):

1/1 x<x, <x+/

(%) =
0 Otherwise (5)

Integrating the product of the traffic stream
condition /u(x,,H) and the pdf /™(x,) yields
equation (4). The space-based instantaneous
travel time model is graphically described in

(Figure 4).
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. Dynamic Travel Time

1. A Space-Based Travel Time Model

Let t™”(xt)be the space-based travel time of
a vehicle traveling at entry location x» and entry
time t in traversing a travel distance /. Note

that the travel distance / can also be defined as

“expected travel distance” that a vehicle can

traverse during a given time tV(xt0). The
expected travel distance ! is estimated as
follows.

In order to estimate the expected travel
distance /, the traffic stream condition along a

road must be a form of travel distance as

u(x,,1)- 77 (x,0,). In other words, the form of the
traffic stream condition should be equivalent to
that of the estimated value. Regarding the pdf,
a natural assumption is that it differs according
to location along a road. This is illustrated in
(Figure 5>, which shows the traffic stream
condition with respect to location “v at entry
time t. The travel time of a vehicle at entry
location x and entry time t in Case A is likely
to be longer than in Case B. The reasonis as
follows. The downward fluctuation of the traffic
stream condition in Case A is located closer to
entry location x than in Case B. This downward
fluctuation in Case A will impact the travel time

of the subject vehicle more than for Case B

pdf

Fm ) =1/1

»

>
x x+l location (x,)

/
u(x,.0)

traffic stream condition

(Figure 4) Graphical representation of space-based
instantaneous travel time model
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u(x,,)-t" (x,8,0) Case A u(x,,t)-t"(x,t,0) Case B
A A
—
7 > 7 >
x:< Ji >f location (x,) B < Ji >!

(Figure 5) The impact of the traffic stream condition distribution versus location

during its travel of a distance /. Thus, the
travel time in Case A must be longer than in
Case B. This indicates that the pdf should differ
with respect to location along a road.

Even though various types of pdf can be
applied, this paper employs the non-linear pdf
(exponential distribution) to consider dynamic
traffic flow. Note that the parameter of the pdf
with the exponential distribution should be
automatically the inverse of expected travel
distance as 1//. Then, the pdf is given as

follows:

1 -0
—e ,
1) =11 '
0 X, <X (6)

Integrating the product of the traffic stream
condition %.(x,,0)-t"(x,t,])and the pdf yields the

“expected travel distance !” as

1 v
_ ) P
I= fu(xv,z) ' (xtl) e dx, ™

Rearranging equation (7) yields

l
u(x,,1)

~15,-3)

5 ®)

. 1
R4 = —
w7 (x,1,1) f le

In equation (7), the distribution of the traffic
stream condition along a road was defined as
u(x,,t)-t”(x,t,1). Note that in equation (8), the

traffic stream condition has been shifted to

location (x,)

traffic stream condition
(Figure 6) Graphical representation of the
space-based travel time model

[/u(x,,t)  which is a form of travel time. The
space-based travel time model is graphically

described in {(Figure 6.

2. A Time-Based Travel Time Model

Let ™ (%)) be the time-based travel time of a
vehicle at location x and time t in traversing a
distance 1. In the time-based travel time model,
the traffic stream condition with respect to time
t, at the starting point of a travel distance x

should be defined as a form of travel time as

/
u(x,t,) (9)

In the time-based travel time model, the pdf
is assumed to be exponentially distributed with
respect to the time difference ¥ 7%) between
the entry time + when the subject vehicle enters

the starting point of a travel distance and the

time % of the traffic stream condition at the
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starting point of a travel distance. If the pdf is
exponentially distributed, the parameter of the

pdf should automatically be the inverse of the

expected travel time 1/7"(xt). As such, the pdf

is given as follows:

1
1 ‘e_r”<x,:,/>“_’")

£ =11 (x,0)
0 >t (10)

t

Integrating the product of the traffic stream
condition and the pdf yields

(=t,)

1
1 1 (1,
e T d,

“u(x,t,) ' (x,h1)

t'(x,t,l):_[ (11)

One of the methods used to solve equation
(11) is the ‘trial-and-error method,” which
vields a satisfactory result by trying out various
means or theories until the error is sufficiently
reduced or eliminated.

Equation (11) also can be expressed as follows:

s (x,t,0)
-t
! dt

ti
I "),

i, ]) =
T @D Lcu(x,zv) /

! (12)

where s"(x50) is the average speed of a vehicle
during the travel of a distance /.
The proposed model has an interesting

characteristic: the travel distance !/ and the

average speed s"(x%.)) consist of the parameter
of the pdf. As shown in (Figure 7), the pdf with
a travel distance 4 that is shorter than the
travel distance % is steeper than the pdf with

the travel distance - This means that the
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probability density
A

Ldl
time (t,)

(Figure 7) Understanding the probability density
function

traffic stream conditionthat is just in the front
of the subject vehicle is critical for the travel
time of the subject vehicle if its travel
distanceis short. However, the traffic stream
condition that is far away from the subject
vehicle can significantly affect the travel time of
the subject vehicle if its travel distance is long.

From the time-based travel time model
(equation (11)), the travel time of a vehicle

traveling a distance between any two locations

on a road can also be obtained. Let t(x.54 ~1,)
be the travel time of a vehicle at location x and

time ¢ traveling between the ends of two

different travel distances /i and %, which begin

from location X . The travel time 7" (%54 ~1) is

simply obtained with the following:

et~ 1) =T (x,0,0,) =1 (x,8,1,) (13)
V. Numerical Examples
1. Scenario 1

In this section, an illustrative numerical

x, = 0km

x, =0.2km

1

x, =04km x,=0.6km x,=08km x,=1.0km

(Figure 8) Layout of the case study site
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example is presented with the time-based travel
time model (equation (11)). The objective is to
demonstrate the properties of the time-based
travel time model and validate its reasonability
with a general traffic situation. Let traffic
speeds at the starting point of a travel distance
z=0km be as follows:

60 km/ hr
40 km/ hr

o) for —wo<t, <0 sec
u(0,2,) =
for 0<t, <400 sec

The layout of the numerical example site is
shown in (Figure 8).

From the time-based travel time model
(equation (11)), the travel time of a vehicle
entering the starting point of a travel distance
I=024m at entry location *=0 # and entry

time t is calculated as

1
)
"
1(0,1,0.2) It

0.2 1

100,602)= | —— ———
( ) Lu&g)ww$am

—ﬁ(z—a)
e 77(0,£,0.2) dtv

_fo2 _ 1
=60 17(0,1,0.2)

0.2 1 e preee Gu o)
v.z e U002 dr,

40 17(0,1,0.2)

0 t

1
02 v
+ et (0,1,0.2)

40

—®

1 1
02 = 02 02 !
_02  Foney (B2 D2 om0

60 40 40 (14)
100 -
’g 90 1"(0,1,1.0)
v
: 80
E 70 7(0,£,0.8)
— 60 -+
g ] //~_:"(o,t,o.6)
=
0
;0 ] 7(0,£,0.4)
20 1 1(0,1,0.2)
10 o
0 T T T 1
0 100 200 300 400

Entry time (t) (sec)

(Figure 9) Travel times 1"(0, t, I) where
[=0.2, 0.4, 0.6, 0.8 and 1.0
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Equation (14) is solved by the “trial-and-error
method.” (Figure 9) shows the estimated profile of
travel times with various travel distances versus
entry time ¢ when the subject vehicle enters the
starting point of the travel distance. Results from
the estimated travel times versus entry time ¢
show an upward trend in mean travel time as the
entry time ¢ increases (the positions of vehicles
in the queue move back) and the travel times

stabilize slowly as travel distance is longer.
2. Scenario 2

One of the main purposes of the numerical
example is to ensure that the model (equation
(11)) holds under ‘first-in-first-out (FIFO)
discipline. Under the FIFO discipline, vehicles
must leave the end of a travel distance in the
same order as entry order to the starting point of
a travel distance. Accdording to Astarita (1996),
the FIFO discipline is violated only if travel
times decline rapidly, that is, if de' (D) dr<—1
In order to generate a rapid decline in travel
time, a rapid speed increase from 40 km/hr to 50
km/hr at » 7Y %" is applied as

60 km/hr  for —o<t, <0 sec
u(0,¢,)=1440 km/hr for 0<t, <50 sec
50 km/hr  for 50<t, <400 sec

80

70 _—
T 1(0,1,0.8)

1(0,4,1.0)

60 -

Travel time (sec)

e
50 —
40 - /

4 /\ t
30 — —1"(0,£,0.4)

— T 1(0,1,0.)

e e
E——— L (R A1)

20

10 +

o] T T T
50 100 150

=)

Entrv time (t) (sec)

(Figure 10) Travel times (0, t, [) where [=0.2,
0.4, 0.6, 0.8 and 1.0
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77(0,£,0.0 ~ 0.2)
- 1(0,1,02~0.4)
,,,,,,,, 7(0,1,0.4 ~ 0.6)

7°(0,4,0.6 ~ 0.8)
77(0,4,0.8~1.0)

0] 50

100 150

Entry time (t) (sec)

(Figure 11) Travel times 1" (0, t, i~

From equation (11), the travel times are
obtained as shown in (Figure 10). The sharp
increase in speed causes the travel time at
entry time t=>50sec to start to drop, as shown in
(Figure 10y, but the FIFO discipline is not
violated (" (O.L0/dr>=)

From equation (13), the travel times between
two locations on a road are obtained as shown
in (Figure 11). An interesting feature is that
the travel time 7'(0.£08~1.0) at entry time
t=50sec does not start to drop, as shown in
(Figure 11). In addition, the resulting profile of
the travel time T (0.608~10) i smoother than
the travel v(0,£02~00).  Thig

illustrates that vehicles disperses to areas with

time result

a higher traffic speed and lower density.

V. Conclusions

This paper derived dynamic travel time
models using a probability approach. Dynamic
travel time models are obtained by assuming
that the travel time of a vehicle depends on the
distribution of the traffic stream condition with
respect to location or time. From the case study,
the models proposed in this paper were
validatedwith very encouraging results. Themodels

properly describe even the behavior of traffic

dispersion.

The proposed model (equation (11))
possessesseveral interesting characteristics.
First, the travel distance consists ofthe

parameter of the pdf so that travel times in
traversing any travel distance can be estimated.
Furthermore, travel times in traveling between
any two different locations on a road can also be
obtained (see equation (13)). This allows for
wide use of the models.

Second, the models do not have an unknown
In the

it is assumed that the travel time

factor for geometric road conditions.
models,
isdetermined by the distribution of the traffic
stream condition, //#, where u is the speed that
is determined by a geometric road condition and
the weight of traffic. This means that the
unknown factor for geometric road conditionsis
already reflected in the traffic stream condition.

Finally, the models hold under the FIFO
discipline. In order to consider dynamic traffic
flow, this paper employs the non-linear pdf
(exponential distribution), which induces the

proposed models to hold under this discipline.

Notation : This paper was presented at the
Transportation Research Board 87th
Annual Meeting and published as a

preceding paper.



thetw Sets x| M29d 3%, 20114 62

References

1. Astarita, V.

description in dynamic network loading
models” In: Proceedings of IV International
Conference on Application of Advanced
Technologies in Transportation Engineering
(AATT), American Society of Civil Engineers,

pp.599~603.

2. Astarita, V. (1996), “A continuous time link
model for dynamic network loading based on
travel time function” In: Lesort, J.-B. (Ed.),

Transportation and Traffic Theory, Elsevier,

Oxford, pp.79~102.

3. Carey, M., Ge, Y.E.and McCartney, M.
(2003), “A whole-link travel-time model

with desirable properties’ Transportation

science, Vol. 37 No. 1, pp.83~96.
4. Carey, M. and McCartney, M.

model used in dynamic traffic assignment’

Transportation Research B, Vol. 36, pp.83~

95.

5. Daganzo, C.F. (1995), “Properties of link
travel time functions under dynamic loads’

Transportation Research B, Vol. 29, pp.95~

98.

6. Friesz, T.L., Bernstein, D., Smith, T.E.,

Tobin, R.L. and Wie, B.W. (1993),

variational inequality formulation of the
dynamic network user equilibrium problem”
Operations Research, Vol. 41, No. 1, pp.179

~191.

7. Lighthill, M.J. and Whitham, G.B. (1955),
“On kinematic waves: II. A theory of traffic

flow on long crowded roads’ Proceedings of

the Royal Society, A 229, pp.281~345.

8. Newell, G.F. (1993), “A simplified theory of
kinematic waves in highway traffic, part I:

General theory Transportation Research B,

Vol. 27, pp.281~287.

9. Newell, G.F. (1993), “A simplified theory of

(1995), “Flow propagation

(2002),

“Behaviour of a whole-the link travel time

10.

11.

12.

13.

14.

15.

16.

P P P F

& P S P
— W

[¢]

fir e B

Ao Mo

rT o>

91

kinematic waves in highway traffic, part II:
Queueing at freeway bottlenecks” Transportation
Research B, Vol. 27, pp.289~303.

Newell, G.F. (1993), “A simplified theory of
kinematic waves in highway traffic, part
III: Multi-destination flows” Transportation
Research B, Vol. 27, pp.305~313.

Ran, B., Boyce, D.E. and LeBlanc, L.J.
(1993), "A new class of instantaneous
dynamic user-optimal traffic assignment
models” Operation Research, Vol. 41,
pp.192~202.

Richards, P.I. (1956), "Shockwaves on the
highway” Operation Research, Vol. 4, pp.42
~b1.

Transportation Research Board. (2000),
“Highway Capacity Manual” National Research
Council, Washington, D.C.

Wu, J.H., Chen, Y. and Florian, M. (1998),
“The continuous dynamic network loading
problem: a mathematical formulation and
solution method” Transportation Research
B, Vol. 32, pp.173~187.

Xu, Y.W. and Wu, J.H., Florian, M.,
Marcotte, P., Zhu, D.L. (1999), "Advances
in the continuous dynamic network loading
problem” Transportation Science, Vol. 33,
No. 4, pp.341~353.

Zhu, D. and Marcotte, P. (2000), “On the
existence of solutions to the dynamic user
equilibrium problem” Transportation Science,
Vol. 34, No. 4, pp.402~414.

20z

Rl

2

Rl
0

<!

010. 11. 24

D 2011 114 (1%b)
2011. 5. 19 (2%

: 2011, 519

: 2011.10. 30

Ar

= A

02 0
4> 4

I'E >
e rH n& I—lrn
~ o 0A z= K
o> e me me
no

o
10
0F

| abstract WH =

r



