Permeation Behavior of Microfiltration Membrane by Alumina Colloidal Suspension under a Cyclic Variation in TMP

운전압력의 순환변화에 따른 알루미나 현탁액의 정밀여과 투과거동

  • Nam, Suk-Tae (Department of Display and Chemical Engineering, Kyungil University) ;
  • Han, Myeong-Jin (Department of Display and Chemical Engineering, Kyungil University)
  • 남석태 (경일대학교 디스플레이화학공학과) ;
  • 한명진 (경일대학교 디스플레이화학공학과)
  • Received : 2010.12.06
  • Accepted : 2011.01.13
  • Published : 2011.03.30

Abstract

This study investigated the fouling behavior of $Al_2O_3$ colloids on polyethylene microfiltration membrane. To examine the effect of operation variation on fouling, operating pressure was increased from 0.49 to 1.96 bar along with time elapses and then was reduced to 0.49 bar reversely. A hysteresis behavior was observed in the membrane permeate flux over pressure, revealing different fluxes at the same pressure according to the pressure control type, increasing and decreasing. Permeate resistance and its rate of increase was higher in the decreasing pressure cycle than in the increasing pressure cycle. At the initial period of filtration, fouling mechanism for the both cycles was governed by the cake filtration. The degree of fouling was higher in the decreasing pressure cycle compared with in the increasing pressure cycle.

본 연구는 폴리에틸렌 정밀여과 막을 이용한 $Al_2O_3$ 콜로이드 현탁액의 운전압력 순환변화에 따른 투과거동을 검토하였다. 운전압력의 순환은 0.49에서 1.96 bar까지 증가시키는 증압운전 후 다시 0.49 bar로 감소시키는 감압운전으로 행하였다. 연속적으로 운전압력을 순환변화 시킨 결과, 증압운전과 감압운전의 투과유속이 서로 다른 이력(hysteresis)을 나타냈다. 현탁액의 투과저항은 감압운전의 경우가 증압운전의 경우보다 컸으며, 투과저항 증가율도 컸다. 막오염 형태는 증압운전과 감압운전 모두 운전초기에 케익오염이 강하게 나타났으며, 막오염의 크기는 감압운전의 오염이 증압운전의 오염보다 컸다.

Keywords

References

  1. W. S. Winston Ho and K. K. Sirkar, Membrane Handbook, Van Nostrand Reinhold, New York (1992).
  2. A. S. Jonsson, et al., "Influence of the concentration of a low-molecular organic solute on the flux reduction of a polyethersulphone ultrafiltration membrane", J. Membr. Sci., 135, 117 (1997). https://doi.org/10.1016/S0376-7388(97)00135-X
  3. A. B. Koltuniewicz, R. W. Field, and T. C. Arnot, "Cross-flow and dead-end microfiltration of oilywater emulsion. Part I: Experimental study and analysis of flux decline", J. Membr. Sci., 102, 193 (1995). https://doi.org/10.1016/0376-7388(94)00320-X
  4. Y. K. Benkahla, et al., "Cake growth mechanism in cross-flow microfiltration of mineral suspension", J. Membr. Sci., 98, 107 (1995). https://doi.org/10.1016/0376-7388(94)00182-X
  5. R. Jiraratananon, D. Uttapap, and C. Tangamornsuksun, "Self-forming dynamic membrane for ultrafiltration of pineapple juice", J. Membr. Sci., 129, 135 (1997). https://doi.org/10.1016/S0376-7388(97)00046-X
  6. W. R. Bowen, J. I. Calvo, and A. Hernandez, "Steps of membrane blocking in flux decline during protein microfiltration", J. Membr. Sci., 101, 153 (1995). https://doi.org/10.1016/0376-7388(94)00295-A
  7. S .S. Madaeni, "Ultrafiltration of very dilute colloidal mixtures", Colloid & Surfaces A, 131, 109 (1998). https://doi.org/10.1016/S0927-7757(97)00081-2
  8. H. C. Lee, J. H. Cho, and J. Y. Park, "Effect of water back flushing time and period in advanced water treatment system by ceramic microfiltration", Membrane Journal, 18(1), 26 (2008).
  9. H. C. Lee and J. Y. Park, "Advanced water treatment of high turbidity source by hybrid process of multi-channels ceramic microfiltration and activated carbon adsorption", Membrane Journal, 18(4), 325 (2008).
  10. J. G. Choi and K. Y. Chung, "Permeation characteristics of the microfiltration tubular module using the discharged rod", Membrane Journal, 19(4), 285 (2009).
  11. A. Ould-Dris, et al., "Analysis of cake build-up and removal in cross-flow microfiltration of CaCO3 suspensions under varying condition", J. Membr. Sci., 175, 267 (2000). https://doi.org/10.1016/S0376-7388(00)00411-7
  12. J. Hermia, "Constant pressure blocking filtration laws - Application to power law non - Newtonian fluids", Trans IChemE., 60, 183 (1982).