Recovery of $SF_6$ gas from Gaseous Mixture ($SF_6/N_2/O_2/CF_4$) through Polymeric Membranes

고분자 분리막을 이용한 혼합가스($SF_6/N_2/O_2/CF_4$)로부터 $SF_6$의 회수

  • Lee, Hyun-Jung (Water Environment Center, Korea Institute of Science and Technology) ;
  • Lee, Min-Woo (Water Environment Center, Korea Institute of Science and Technology) ;
  • Lee, Hyun-Kyung (Department of Industrial Chemistry, Sangmyung University) ;
  • Choi, Ho-Sang (Department of Chemical Engineering, Kyungil University) ;
  • Lee, Sang-Hyup (Water Environment Center, Korea Institute of Science and Technology)
  • 이현정 (한국과학기술연구원 물환경센터) ;
  • 이민우 (한국과학기술연구원 물환경센터) ;
  • 이현경 (상명대학교 공업화학과) ;
  • 최호상 (경일대학교 화학공학과) ;
  • 이상협 (한국과학기술연구원 물환경센터)
  • Received : 2010.11.27
  • Accepted : 2011.03.03
  • Published : 2011.03.30

Abstract

During the maintenance, repair and replacement process of circuit breaker, $SF_6$ reacted with input air in arc discharge, which led to the production of by-product gases (eg, $N_2$, $O_2$, $CF_4$, $SO_2$, $H_2O$, HF, $SOF_2$, $CuF_2$, $WO_3$). Among these various by-product gases, $N_2$, $O_2$, $CF_4$ is major component. Therefore, the effective separation process is necessary to recycle the $SF_6$ gas from the mixture gas containing $N_2$, $O_2$, $CF_4$. In this study, the membrane separation process was applied to recycle the $SF_6$ gas from the mixture gas containing $N_2$, $O_2$, $CF_4$. The concentration of $SF_6$ gas in gas produced from the electric power industry is over than 90 vol%. Therefore, we made the simulated gas containing $N_2$, $O_2$, $CF_4$, $SF_6$ which the concentration of $SF_6$ gas is minimum 90 vol%. From the results of membrane separation process of $SF_6$ gas from $N_2$, $O_2$, $CF_4$ $SF_6$ mixture gases, PSF membrane shown the highest recovery efficiency 92.7%, in $25^{\circ}C$ and 150 cc/min of retentate flow rate. On the other hand, PC membrane shown the highest recovery efficiency 74.8%, in $45^{\circ}C$ and 150 cc/min of retentate flow rate. Also, the highest rejection rate of $N_2$, $O_2$, $CF_4$ is 80, 74 and 58.9% seperately in the same operation condition of highest recovery efficiency. From the results, we supposed the membrane separation process as the effective $SF_6$ separation and recycle process from the mixture gas containing $N_2$, $O_2$, $CF_4$, $SF_6$.

중전기의 유지 보수 및 교체 과정에서 절연체로 사용된 $SF_6$ 가스는 교체 충전과 정제과정에서 유입되는 공기와의 아크 방전에 의해 많은 종류의 부산물($N_2$, $O_2$, $CF_4$, $SO_2$, $H_2O$, HF, $SOF_2$, $CuF_2$, $WO_3$ 등)이 발생된다. 부산물 중에서도 대부분을 차지하는 것이 $N_2$, $O_2$, $CF_4$이며, $SF_6$가스를 재사용하기 위해서는 이들을 효과적으로 분리 회수하는 공정이 필요하다. 주요 부산물인 $N_2$, $O_2$, $CF_4$와의 분리 효율 측면에서 분리막법은 기존의 흡착, 심냉법에 비하여 상대적으로 높은 효율을 보이고 있어 이에 대한 관심 또한 증가하고 있다. 따라서 본 논문에서는 중전기 산업에서 발생되는 $SF_6$ 가스 함유 농도 90 vol% 이상의 가스에 대하여 분리막법을 적용하여 $N_2$, $O_2$, $CF_4$$SF_6$ 가스의 온도와 배출유량의 변화에 따른 분리 회수 가능성을 관찰하였다. PSF와 PC 중공사 분리막을 이용하여 고농도 $SF_6$에 대한 분리 회수 실험 결과, PSF 분리막의 최대 회수율은 압력 0.3 MPa, 온도 $25^{\circ}C$, 배출유량 150 cc/min에서 92.7%를 나타내었으며, PC 분리막에서는 압력 0.3 MPa, 온도 $45^{\circ}C$, 배출유량 150 cc/min 일 때 74.8%의 최대 회수율을 나타내었다. 또한, 사용된 두 가지 분리막과 운전 조건에서 주요 부산물인 $N_2$, $O_2$, $CF_4$의 최대 제거율은 각각 약 80%, 74%, 그리고 58.9%가 관찰되었다. 이로부터 분리막 공정은 고농도 폐 $SF_6$ 가스에서 주요 부산물로부터 $SF_6$의 효과적인 분리 및 회수가 가능한 공정으로 적용할 수 있는 가능성을 파악 할 수 있었다.

Keywords

References

  1. E. Preisegger, R. Durschner, W. Klotz, C. A. Konig, H. Krahling, C. Neumann, and B. Zahn, "Non-$CO_{2}$ greenhouse gases:scientific understanding, control and implementation; Life cycle assessment electricity supply using $SF_{6}$ technology", pp. 391, Kluwer Academic Publishers, Dordrecht (1999).
  2. W.-T. Tsai, "The decomposition products of sulfur hexafluoride ($SF_{6}$) : Reviews of environmental and health risk analysis", J. Fluorine Chemistry, 128(11), 1345 (2007). https://doi.org/10.1016/j.jfluchem.2007.06.008
  3. M. Maiss, L. P. Steele, R. J. Francey, P. J. Fraser, R. L. Langenfelds, N. B. A. Trivett, and I. Levin, "Sulfur hexafluoride- A powerful new atmospheric tracer", Atmospheric Enviroment, 30(10/11), 1621 (1996). https://doi.org/10.1016/1352-2310(95)00425-4
  4. M. K. W. Ko, N. D. Sze, W.-C. Wang, G. Shia, A. Goldman, F. J. Murcray, D. G. Murcray, and C. P. Rinsland, "Atmospheric sulfur hexafluoride: sources, sinks and greenhouse warming", J. Geophysical Research, 98(D6), 10,499 (1993). https://doi.org/10.1029/93JD00228
  5. O. Yamamoto, T. Takkuma, and M. Kinouchi, "Recovery of $SF_{6}$ from $N_{2}$/$SF_{6}$ gas mixtures by using a polymer membrane", IEEE Electrical Insulation Magazine, 18(3), 32 (2002). https://doi.org/10.1109/MEI.2002.1014965
  6. S. A. Montzka and P. J. Fraser, "Scientific Assessement of Ozone Depletion : 2002, Controlled Substances and Other Source Gases", World Meteorlogical Organization (WMO), 1.22 (2003).
  7. U. S. Climate Change Technology, "4.3.3 Semiconductors and Magnesium: Recovery and Recycle", U. S. Climate Change Technology Program Technology Options for the Near and Long Term, 4.3 (2005)
  8. S. P. Cashion, N. J. Ricketts, and P. C. Hayes, "Characterisation of protective surface films formed on molten magnesium protected by air/$SF_{6}$ atmospheres", J. Light Metals, 2(1), 37 (2002). https://doi.org/10.1016/S1471-5317(02)00011-1
  9. S. Lee, "Development of $SF_{6}$ Gas Recycling System for Global Warming Reduction", Ministry of Knowledge Economy, 12 (2009).
  10. Y.-F. Wang, M. Shih, C.-H. Tsai, and P.-J. Tsai, "Total toxicity equivalents emissions of $SF_{6}$, $CHF_{3}$, and $CCI_{2}F_{2}$ decomposed in a RF plasma environment", Chemosphere, 62(10), 1681 (2006). https://doi.org/10.1016/j.chemosphere.2005.06.036
  11. R. Kurte, H. M. Heise, and D. Klockow, "Quantitative infrared spectroscopic analysis of $SF_{6}$ decomposition products obtained by electrical partial discharges and sparks using PLS-calibrations", J. Molecular Structure, 505, 565 (2001).
  12. F. Pepi, A. Ricci, M. D. Stefano, and M. Rosi, "Sulfer hexafluoride corona discharge decomposition : gas-phase ion chemisty of $SOF_{\chi}^{+}$ ($\chi$=1-3) ions", Chemical Physics Letters, 381(1-2), 168 (2003). https://doi.org/10.1016/j.cplett.2003.09.123
  13. International Standard, "Guidelines for the checking and treatment of sulfer hexafluoride ($SF_{6}$) taken from electrical equipment and specification for its re-use", International Electrotechnical Commission, IEC 60480 Second edition (2004).
  14. International Standard, "Specification of technical grade sulfer hexafluoride ($SF_{6}$) for use in electrical equipment", International Electrotechnical Commission, IEC 60376 Second edition (2005).
  15. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, "Climate Change 2007 : The Physical Science Basis", IPCC Fourth Assessment Report (AR4), http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf (2007).
  16. H. Lee, M. Lee, H. Lee, and S. Lee, "Separation and Recovery of $SF_{6}$ Gas from $N_{2}$/$SF_{6}$ Gas Mixtures by using a Polymer Hollow Fiber Membranes", Kor. Soc. Environ. Eng., submited.
  17. H. Lee, M. Lee, H. Lee, and S. Lee, "Permeation and Permselectivity variation of $O_{2}$, $CF_{4}$ and $SF_{6}$ through Polymeric Hollow Fiber Membranes", Membrane Journal, 20(3), 249 (2010).
  18. J. Kim, J. Rhim, and S. Lee, "Research trend of membrane technology for separation of carbon dioxide from flue gas", Membrane Journal, 12(3), 121 (2002).
  19. S. H. Han, H. B. Park, and Y. M. Lee, "Recent technology trends of polymeric gas separation membranes", Polym. Sci. Technol., 19(4), 284 (2008).
  20. R. W. Baker, "Membrane technology and applications", pp. 15-86, McGraw-Hill, New York, NY (2000).
  21. M. Mulder, "Basic principles of membrane technology", pp. 22-70, pp. 280-415, Kluwer Academic Publishers, Dordrecht (1996).
  22. R. T. Chern, W. J. Koros, E. S. Sanders, and R. Yui, "Second component' effects in sorption and permeation of gases in glassy polymers", J. Membr. Sci., 15(2), 157 (1983). https://doi.org/10.1016/S0376-7388(00)80395-6