Characterization of Sulfonated Ploy(aryl ether sulfone) Membranes Impregnated with Sulfated $ZrO_2$

Sulfated $ZrO_2$를 함침한 SPAES 연료전지막의 특성 평가

  • Kim, Mi-Nai (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Choi, Young-Woo (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Kim, Tae-Young (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Lee, Mi-Soon (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Kim, Chang-Soo (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Yang, Tae-Hyun (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Nam, Ki-Seok (Specialized Graduate School of Hydrogen and Fuel Cells, Chonbuk National University)
  • 김미내 (한국에너지기술연구원 연료전지센터) ;
  • 최영우 (한국에너지기술연구원 연료전지센터) ;
  • 김태영 (한국에너지기술연구원 연료전지센터) ;
  • 이미순 (한국에너지기술연구원 연료전지센터) ;
  • 양태현 (한국에너지기술연구원 연료전지센터) ;
  • 김창수 (한국에너지기술연구원 연료전지센터) ;
  • 남기석 (전북대학교 수소연료전지 특성화 대학원)
  • Received : 2010.09.15
  • Accepted : 2011.03.05
  • Published : 2011.03.30

Abstract

Composite membranes based on sulfonated poly(aryl ether) sulfone (SPAES) with different sulfated zirconia nanoparticles ($s-ZrO_2$) ratio are synthesized and investigated for the improvement of the hydration and the proton conductivity at high temperature and no humidification for fuel cell applications. X-ray diffraction technique is employed to characterize the structure and the size of $s-ZrO_2$ nanoparticles. The sulfation effect of $s-ZrO_2$ nanoparticles is verified by FT-IR analysis. The properties of the SPAES composite membranes with the various $s-ZrO_2$ ratio are evaluated by ion exchange capacity and water content. The proton conductivities of the composite membranes are estimated at room temperature with full hydration and at the various high temperature without external humidification. The composite membrane with 5 wt% $s-ZrO_2$ shows the highest proton conductivity. The proton conductivities are $0.9292\;S\;cm^{-1}$ at room temperature with full hydration and $0.0018\;S\;cm^{-1}$ at $120^{\circ}C$ without external humidification, respectively.

고온 무가습 조건에서 고분자 전해질 막의 수화성 및 수소이온 전도도 향상을 위해 sulfonated poly(aryl ether sulfone) 전해질 고분자에 sulfated $ZrO_2$ ($s-ZrO_2$)를 함침시킨 유-무기 복합막을 제조하였다. X-ray diffraction를 통해 $s-ZrO_2$ 의 구조적 특징과 입자크기를 확인하였으며 추가적으로 FT-IR 분석을 통해, $s-ZrO_2$입자에 술폰산기가 화학적으로 결합되어 있음을 확인 할 수 있었다. 다양한 $s-ZrO_2$ 조성비를 가진 유-무기 복합막의 이점을 확인하기 위해서 이온교환능력, 함수율, 수소이온 전도도를 측정하였다. 실험결과, $s-ZrO_2$의 조성비를 달리한 유-무기 복합막의 수소이온 전도도는, 5 wt% $s-ZrO_2$를 함유한 유-무기 복합막의 경우에서, 상온 수화조건 뿐만 아니라 $100^{\circ}C$ 이상의 무가습 조건에서 매우 높은 수소 이온 전도도를 나타내었다. 특히 $120^{\circ}C$ 무가습 조건에서도 5 wt% $s-ZrO_2$를 함유한 유-무기 복합막이 $0.0018\;S\;cm^{-1}$의 매우 높은 전도도를 나타냄으로써 $100^{\circ}C$ 이상의 고온에서도 높은 수화도를 유지하는 유-무기 복합막의 제조가 가능하였다.

Keywords

References

  1. H. S. Kim, S. U. Hong, W. S. Choi, and J. H. Kim, "Characterization of Carbon Composite Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells", Membrane Journal, 15, 141 (2005).
  2. V. Ramani, H. R. Kunz, and J. M. Fenton, "Investigation of Nafion/HPA composite membranes for high temperature/low relative humidity PEMFC operation", J. Membr. Sci., 232, 31 (2004). https://doi.org/10.1016/j.memsci.2003.11.016
  3. D. Lu, W. Lu,⁎C. Li, J. Liu, and J. Xu, "Proton conducting composite membranes derived from poly(2,6-dimethyl-1, 4-phenylene oxide) doped with phosphosilicate gels", Solid State Ionics, 177, 1111 (2006). https://doi.org/10.1016/j.ssi.2006.05.013
  4. S. L. Chena, A. B. Bocarsly, and J. Benziger, "Nafion layered sulfonated polysulfone fuel cell membranes", J. Power Sources, 152, 27 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.214
  5. S. L. Chen, L. Krishnan, S. Srinivasan, J. Benziger, and A. B. Bocarsly, "Ion exchange resin/polystyrene sulfonate composite membranes for PEM fuel cells", J. Membr. Sci., 243, 327 (2004). https://doi.org/10.1016/j.memsci.2004.06.037
  6. J. Jeong, K. Yoon, J. k. Choi, Y. J. Kim, and Y. T. Hong, "Preparation and Characterization of the $H_{3}PO_{4}$-doped Sulfonated Poly(aryl ether benzimidazole) Membrane for Polymer Electrolyte Membrane Fuel Cell", Membrane Journal, 16, 276 (2006).
  7. M. C. Yoo, B. J. Chang, J. H. Kim, S. B. Lee, and Y. T. Lee, "Sulfonated Perfluorocycobutyl Biphenylene Polymer Electrolyte Membranes for Fuel Cells", Membrane Journal, 15, 355 (2005).
  8. M. Rikukawa and K. Sanui, "Proton-conducting polymer electrolyte membranes based on hydrocarbon polymer", Prog. Polym. Sci., 25, 1463 (2000). https://doi.org/10.1016/S0079-6700(00)00032-0
  9. Q. Guo, P. N. Pintauro, H. Tangb, and S. O'Connor, "Sulfonated and crosslinking polyphosphazenebased proton-exchange membranes", J. Membr. Sci., 154, 175 (1999) https://doi.org/10.1016/S0376-7388(98)00282-8
  10. W. Essafi, G. Gebel, and R. Mercier, "Sulfonated polyimide ionomers: A structural study", Macromolecules, 37, 1431 (2004). https://doi.org/10.1021/ma034965p
  11. R. Y. M. Huang, P. Shao, C. M. Burns, and X. Feng, "Sulfonation of poly(ether ether detone) (PEEK) : Kinetic study and characterization", J. Appl. Polym. Sci., 82, 2651 (2001). https://doi.org/10.1002/app.2118
  12. R. Souzy, B. Ameduri, B. Boutevin, G. Gebel, and P. Capron, "Functional fluoropolymers for fuel cell membranes", Solid State Ionics, 176, 2839 (2005). https://doi.org/10.1016/j.ssi.2005.09.016
  13. S. Hara and M. Miyayama, "Proton conductivity of superacidic sulfated zirconia", Solid State Ionics, 168, 111 (2004). https://doi.org/10.1016/j.ssi.2004.01.030
  14. X. Li, K. Nagaoka, and J. A. Lercher, "Labile sulfates as key components in active sulfated zirconia for n-butane isomerization at low temperatures", J. Catal., 227, 130 (2004). https://doi.org/10.1016/j.jcat.2004.07.003
  15. S. Tominaka, T. Momma, B. Scrosati, and T. Osaka, "Sulfated zirconia as a proton conductor for fuel cells: Stability to hydrolysis and influence on catalysts", J. Power Sources, 195, 4065 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.053
  16. B. S. Pivovar, Y. Wang, and E. L. Cussler, "Pervaporation membranes in direct methanol fuel cells", J. Membr. Sci., 154, 155 (1999). https://doi.org/10.1016/S0376-7388(98)00264-6
  17. M. A. Navarra, F. Croce, and B. Scrosati, "New, high temperature superacid zirconia-doped NafionTM composite membranes", J. Mater. Chem., 17, 3210 (2007). https://doi.org/10.1039/b702322g