Behavior of NOM Fouling in Submerged Photocatalytic Membrane Reactor Combined with $TiO_2$ Nanoparticles

$TiO_2$ 나노입자/UV 결합 침지형 중공사막 시스템에서 자연유기물의 파울링거동

  • Park, Seung-Soo (Department of Environmental Engineering, Inha University) ;
  • Seo, Hyung-Jun (Department of Environmental Engineering, Inha University) ;
  • Kim, Jeong-Hwan (Department of Environmental Engineering, Inha University)
  • Received : 2010.12.17
  • Accepted : 2011.03.11
  • Published : 2011.03.30

Abstract

In this study, combined effect of airflow rate, $TiO_2$ concentration, solution pH and $Ca^{+2}$ addition on HA (humic acid) fouling in submerged, photocatalytic hollow-fiber microfiltraiton was investigated systematically. Results showed that UV irradiation alone without $TiO_2$ nanoparticles could reduce HA fouling by 40% higher than the fouling obtained without UV irradiation. Compared to the HA fouling without UV irradiation and $TiO_2$ nanoparticles, the HA fouling reduction was about 25% higher only after the addition of $TiO_2$ nanoparticles. Both adsorptive and hydrophilic properties of $TiO_2$ nanoparticles for the HA can be involved in mitigating membrane fouling. It was also found that the aeration itself had lowest effect on fouling mitigation while the HA fouling was affected significantly by solution pH. Transient behavior of zeta potential at different solution pHs suggested that electrostatic interactions between HA and $TiO_2$ nanoparticles should improve photocatalytic efficiency on HA fouling. $TiO_2$ concentration was observed to be more important factor than airflow rate to reduce HA fouling, implying that surface reactivity on $TiO_2$ naoparticles should be important fouling mitigation mechanisms in submerged, photocatalyic microfiltraiton. This was further supported by investigating the effect of $Ca^{+2}$ addition on fouling mitigation. At higher pH (= 10), addition of $Ca^{+2}$ can play an important role in bridging between HA and $TiO_2$ nanoparticles and increasing surface reactivity on nanoparticles, thereby reducing membrane fouling.

자연유기물을 처리하는 침지형 중공사막 정밀여과 시스템에서 $TiO_2$ 나노입자와 UV를 이용한 광촉매 반응을 적용 시 공기폭기, $TiO_2$ 농도, 용액의 pH 그리고 $Ca^{+2}$의 존재가 자연유기물에 의한 파울링에 미치는 혼합영향을 관찰하였다. 실험결과, $TiO_2$ 나노입자 없이 단순 UV의 조사만으로 자연유기물에 의한 파울링은 약 40% 정도 감소시킬 수 있었다. 또한 UV의 조사 없이 $TiO_2$ 나노입자의 교반만으로 약 25%의 파울링 감소효과를 나타내었다. 공기폭기가 광촉매 반응에 미치는 영향을 확인해 본 결과 공기폭기를 적용해 주지 않은 경우와 비교했을시 공기폭기로 인한 자연유기물의 제거효율은 약 12% 정도 향상되었다. 이는 공기폭기로 인한 분리막 표면으로부터 자연유기물의 물리적인 역수송 보다는 산소공급으로 인해 광촉매 반응이 더욱 향상된 것으로 판단된다. 공기폭기 유량, $TiO_2$ 농도, 용액의 pH 영향정도를 관찰한 결과 공기폭기가 자연유기물 파울링 감소에 미치는 영향이 가장 낮은 것으로 나타났다. 반면, 용액의 pH 경우 낮은 pH (= 4.5)에서 파울링 감소에 미치는 영향이 가장 높은 것으로 관찰되었다. 또한 $TiO_2$ 나노입자 농도가 증가할 수록 파울링 감소효과도 증가하였으며 용액의 pH를 낮출수록 파울링 감소는 증가하였다. 이는 낮은 pH에서 서로 반대전하를 지닌 자연유기물과 $TiO_2$ 나노 입자간의 정전기적인 인력이 증가하여 $TiO_2$ 나노입자 표면에서 자연유기물의 광촉매분해능이 향상된 것으로 사료된다. 또한 자연유기물 중 $Ca^{+2}$의 첨가는 상대적으로 높은 pH (= 10)에서 자연유기물과 $TiO_2$ 나노입자 사이 가교현상을 촉진시켜 $Ca^{+2}$이 첨가되지 않은 경우와 비교시 높은 파울링 감소효과와 자연유기물의 분해효과를 달성시킬 수 있었다.

Keywords

References

  1. R. C. Viadero Jr and J. A. Noblet, "Membrane filtration for removal of fine solids from aquaculture process water", Aqr. Eng., 26(3), 151 (2002). https://doi.org/10.1016/S0144-8609(02)00011-0
  2. O. J. OIsen and U. H. Haagensen, "Membrane filtration for the reuse of city waste water", Desalination, 47(1-3), 257 (1983). https://doi.org/10.1016/0011-9164(83)87079-9
  3. K. H. Choo, R. Tao, and M. J. Kim, "Use of a photocatalytic membrane reactor for the removal of natural organic matter in water : Effect of photoinduced desorption and ferrihydrite adsorption", J. Membr. Sci., 322(2), 368 (2008). https://doi.org/10.1016/j.memsci.2008.05.069
  4. J. F. Fu, M. Ji, and D. N. An, "Fulvic acid degradation using nanoparticle $TiO_{2}$ in a submerged membrane photocatalysis reactor", J. Environ. Sci., 17(6), 942 (2005).
  5. J. H. Kim, "Physicochemical effect on permeate flux in a hybrid ozone-ceramic ultrafiltration membrane treating natural organic matter", Membrane Journal, 18(4), 354 (2008).
  6. J. S. Kim, Z. Cai, and M. M. Benjamin, "NOM fouling mechanisms in a hybrid adsorption/membrane system", J. Membr. Sci., 349(1-2), 35 (2010). https://doi.org/10.1016/j.memsci.2009.11.017
  7. N. H. Lee, G. Amy, J. P. Croue, and H. Buisson, "Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic matter (NOM)", Water. Res., 38(20), 4511 (2004). https://doi.org/10.1016/j.watres.2004.08.013
  8. N. H. Lee, G. Amy, J. P. Croue, and H. Buisson, "Morphological analyses of natural organic matter (NOM) fouling of low-pressure membranes (MF/UF)", J. Membr. Sci., 261(1-2), 7 (2005). https://doi.org/10.1016/j.memsci.2005.02.039
  9. K. Kimura, Y. Hane, Y. Watanabe, G. Amy, and N. Ohkuma, "Irreversible membrane fouling during ultrafiltration of surface water", Water. Res., 38(14-15), 3431 (2004). https://doi.org/10.1016/j.watres.2004.05.007
  10. Y. Bessiere, B. Jefferson, E. Goslan, and P. Bacchin, "Effect of hydrophilic, hydrophobic fractions of natural organic matter on irreversible fouling of membranes", Desalination, 249(1), 182 (2009). https://doi.org/10.1016/j.desal.2008.12.047
  11. M. Saquib, C. Vinckier, and B. Van der Bruggen, "The effect of UF on the efficiency of $O_{3}$/$H_{2}O_{2}$ for the removal of organics from surface water", Desalination, 260(1-3), 39 (2010). https://doi.org/10.1016/j.desal.2010.05.003
  12. J. S. Yang, D. X. Yuan, and T. P. Weng, "Pilot study of drinking water treatment with GAC, $O_{3}$/BAC and membrane processes in Kinmen Island, Taiwan", Desalination, 263(1-3), 271 (2010). https://doi.org/10.1016/j.desal.2010.06.069
  13. W. H. Song, V. Ravindran, B. E. Koel, and M. Pirbazari, "Nanofiltration of natural organic matter with $H_{2}O_{2}$/UV pretreatment: fouling mitigation and membrane surface characterization", J. Membr. Sci., 241(1), 143 (2004).
  14. J. Y. Park and G. Y. Park, "Advanced water treatment of high turbidity source by hybrid process of ceramic microfiltration and activated carbon adsorption: Effect of organic materials in $N_{2}$-back-flushing", Membrane Journal, 19, 203 (2009).
  15. H. C. Lee and J. Y. Park, "Advanced water treatment of high turbidity source by hybrid process of ceramic microfiltration and activated carbon adsorption: Effect of water-back-flushing time and period", Membrane Journal, 19, 7 (2009).
  16. J. Yu, X. Zhao, Q. Zhao, and G. Wang, "Preparation and characterization of super-hydrophilic porous $TiO_{2}$ coating films", Mater. Chem. and Phys., 68(1-3), 253 (2001). https://doi.org/10.1016/S0254-0584(00)00364-3
  17. X. Huang, M. Leal, and Q. Li, "Degradation of natural organic matter by $TiO_{2}$ photocatalytic oxidation and its effect on fouling of low-pressure membrane", Water. Res., 42(4-5), 1142 (2008). https://doi.org/10.1016/j.watres.2007.08.030
  18. M. L. Luo, J. Q. Zhao, W. Tang, and C. S. Pu, "Hydrophilic modification of poly(ether sulfone) ultrafiltration membrane surface by self-assembly of $TiO_{2}$ nanoparticles", Appl. Surf. Sci., 249(1-4), 76 (2005). https://doi.org/10.1016/j.apsusc.2004.11.054
  19. A. D. Syafei, C. F. Lin, and C. H. Wu, "Removal of natural organic matter by ultrafiltration with $TiO_{2}$-coated membrane under UV irradiation", J. Colloid and Interf. Sci., 323(1), 112 (2008). https://doi.org/10.1016/j.jcis.2008.03.037
  20. H. K. Shon, S. Phuntsho, and S. Vigneswaran, "Effect of photocatalysis on the membrane hybrid system for wastewater treatment", Desalination, 225(1-3), 235 (2008). https://doi.org/10.1016/j.desal.2007.05.032
  21. G. Liu, X. Zhang, J. W. Talley, C. R. Neal, and H. Wang, "Effect of NOM on arsenic adsorption by $TiO_{2}$ in simulated As(III)-contaminated raw waters", Water. Res., 42(8-9), 2309 (2008). https://doi.org/10.1016/j.watres.2007.12.023
  22. J. B. Han, X. Wang, N. Wang, Z. H. Wei, G. P. Yu, Z. G. Zhou, and Q. Wang, "Effect of plasma treatment on hydrophilic properties of $TiO_{2}$ thin films", Surf. Coat. Tech., 200(16-17), 4876 (2006). https://doi.org/10.1016/j.surfcoat.2005.04.036
  23. S. Liu, M. Lim, R. Fabris, C. Chow, K. Chiang, M. Drikas, and R. Amal, "Removal of humic acid using $TiO_{2}$ photocatalytic process-Fractionation and molecular weight characterisation studies", Chemosphere, 72(2), 263 (2008). https://doi.org/10.1016/j.chemosphere.2008.01.061
  24. P. Le-Clech, E. K. Lee, and V. Chen, "Hybrid photocatalysis/membrane treatment for surface waters containing low concentrations of natural organic matters", Water Res., 40(2), 323 (2006). https://doi.org/10.1016/j.watres.2005.11.011