Advanced Water Treatment of High Turbidity Source by Hybrid Process of Photocatalyst and Ceramic Microfiltration: Effect of Organic Materials in Water-back-flushing

광촉매 및 세라믹 정밀여과 혼성공정에 의한 고탁도 원수의 고도정수처리: 물 역세척시 유기물의 영향

  • Park, Jin-Yong (Department of Environmental Sciences & Biotechnology, Hallym University) ;
  • Lee, Gwon-Seop (Department of Environmental Sciences & Biotechnology, Hallym University)
  • 박진용 (한림대학교 환경생명공학과) ;
  • 이권섭 (한림대학교 환경생명공학과)
  • Received : 2011.02.07
  • Accepted : 2011.03.19
  • Published : 2011.03.30

Abstract

For advanced drinking water treatment of high turbidity water, we used the hybrid module that was composed of photocatalyst packing between outside of tubular ceramic microfiltration membrane and membrane module inside. Photocatalyst was PP (polypropylene) bead coated $TiO_2$ powder by CVD (chemical vapor deposition) process. Instead of natural organic matters (NOM) and fine inorganic particles in natural water source, modified solution was prepared with humic acid and kaolin. Water-back-flushing of 10 sec was performed per every period of 10 min to minimize membrane fouling. Resistance of membrane fouling ($R_f$) decreased and J increased as concentration of humic acid changed from 10 mg/L to 2 mg/L, and finally the highest total permeate volume ($V_T$) could be obtained at 2 mg/L. Then, treatment efficiencies of turbidity and $UV_{254}$ absorbance were above 98.5% and 85.7%, respectively. As results of treatment portions by membrane filtration, photocatalyst adsorption, and photo-oxidation in MF, MF + $TiO_2$, and MF + $TiO_2$ + UV processes, turbidity was treated little by photocatalyst adsorption, and photo-oxidation. However, treatment portions of humic acid by adsorption and photo-oxidation were above 10.7 and 8.6%, respectively.

고탁도 원수의 고도정수처리를 위해 관형 세라믹 정밀여과막 외부와 원통형 막 모듈 내부 사이의 공간에 광촉매를 충전한 혼성 모듈을 사용하였다. 광촉매는 PP (polypropylene) 구(bead)에 $TiO_2$ 분말을 플라즈마 화학증착(chemical vapor deposition) 공정으로 코팅한 것이다. 정수 원수 중 자연산 유기물(NOM)과 미세 무기 입자를 대체하기 위해, 휴믹산(humic acid)과 카올린(kaolin) 모사용액을 대상으로 하였다. 혼성공정에서 막오염을 최소화하기 위해 10분 주기로 10초 동안 물 역세척을 시행하였다. 휴믹산을 10 mg/L부터 2 mg/L로 변화시킴에 따라, 막오염에 의한 저항($R_f$)이 감소하고 J가 증가하여 2 mg/L에서 가장 높은 총여과부피($V_T$)를 얻었다. 탁도 및 $UV_{254}$ 흡광도의 처리효율은 각각 98.5% 및 85.7% 이상이었다. MF 공정 및 MF + $TiO_2$ 공정, MF + $TiO_2$ + UV 공정의 막여과 및 광촉매 흡착, 광산화의 처리 분율을 알아본 결과, 광촉매 흡착과 광산화에 의해 탁도는 거의 처리되지 않았으나, 광촉매 흡착 및 광산화에 의한 휴믹산 처리 분율은 각각 10.7, 8.6% 이상이었다.

Keywords

References

  1. J. C. Park, J. W. Park, J. K. Shin, and H. M. Lee, "Dynamics of high turbid water caused by heavy rain of monsoon and typhoon in a large Korean reservoir (Andong reservoir)", Korean J. Limnol, 38(1), 105 (2005).
  2. S. J. G., K. C. Geun, and H. S. Jin, "Daily variations of water turbidity and particle distribution of high turbid-water in Paldang reservoir, Korea", Korean J. Limnol, 36(3), 257 (2003).
  3. J. K. Shin, J. Hur, H. S. Lee, J. C. Park, and S. J. Hwang, "Spatial interpretation of Monsoon turbid- water wnvironment in a reservoir (Yongdam) discharging surface water, Korea", J. Korean Society of Water Quality, 22(5), 933 (2006).
  4. J. Y. Park, "Effect of water-back-flushing time on recovery efficiency in ceramic filtration system for paper wastewater treatment", Membrane Journal, 14(4), 329 (2004).
  5. J. H. Park, S. Y. Lee, and H. S. Park, "Removal of NOM in a coagulation process enhanced by modified clay", J. Korean Society of Water & Wastewater, 21(1), 37 (2007).
  6. M. H. Cho, C. H. Lee, and S. H. Lee, "Effect of flocculation conditions on membrane permeability in coagulation-microfiltration", Desalination, 191, 386 (2006). https://doi.org/10.1016/j.desal.2005.08.017
  7. Y. Yoon and R. M. Lueptow, "Removal of organic contaminants by RO and NF membranes", J. Membr. Sci., 261, 76 (2005). https://doi.org/10.1016/j.memsci.2005.03.038
  8. M. R. Teixeira and M. J. Rosa, "The impact of the water background inorganic matrix on the natural organic matter removal by nanofiltration", J. Membr. Sci., 279, 513 (2006). https://doi.org/10.1016/j.memsci.2005.12.045
  9. J. H. Chung, K. H. Choo, and H. S. Park, "Low pressure hybrid membrane processes for drinking water treatment", Membrane Journal, 17(3), 161 (2007).
  10. H. S. Kim, S. Takizawa, and S. Ohgaki, "Application of microfiltration systems coupled with powdered activated carbon to river treatment", Desalination, 202, 271 (2007). https://doi.org/10.1016/j.desal.2005.12.064
  11. S. Mozia and M. Tomaszewska, "Treatment of surface water using hybrid processes-adsorption on PAC and ultrafiltration", Desalination, 162, 23 (2004). https://doi.org/10.1016/S0011-9164(04)00023-2
  12. R. H. S. Jansen, J. W. de Rijk, A. Zwijnenburg, M. H. V. Mulder, and M. Wessling, "Hollow fiber membrane contactors-A means to study the reaction kinetics of humic substance ozonation", J. Membr. Sci., 257, 48 (2005). https://doi.org/10.1016/j.memsci.2004.07.038
  13. K. W. Park, K. H. Choo, and M. H. Kim, "Use of a combined photocatalysis/ microfiltration system for natural organic matter removal", Membrane Journal, 14(2), 149 (2004).
  14. Y. T. Lee and J. K. Oh, "Membrane fouling effect with organic-inorganic materials using the membrane separation in drinking water treatment process", Membrane Journal, 13(4), 219 (2003).
  15. W. Yuan, A. Kocic, and A. L. Zydney, "Analysis of humic acid fouling during microfiltration using a pore blockage-cake filtration model", J. Membr. Sci., 198, 51 (2002). https://doi.org/10.1016/S0376-7388(01)00622-6
  16. D. B. Mosqueda-Jimenez and P. M. Huck, "Characterization of membrane foulants in drinking water treatment", Desalination, 198, 173 (2006). https://doi.org/10.1016/j.desal.2005.12.025
  17. M. Heran and S. Elmaleh, "Microfiltration through an inorganic tubular membrane with high frequency retrofiltration", J. Membr. Sci., 188, 181 (2001). https://doi.org/10.1016/S0376-7388(01)00351-9
  18. S. K. Karode, "Unsteady state flux response: a method to determine the nature of the solute and gel layer in membrane filtration", J. Membr. Sci., 188, 9 (2001). https://doi.org/10.1016/S0376-7388(00)00644-X
  19. H. K. Vyas, A. J. Mawson, R. J. Bennett, and A. D. Marshall, "A new method for estimating cake height and porosity during filtration of particulate suspensions", J. Membrane Sci., 176, 113 (2000). https://doi.org/10.1016/S0376-7388(00)00437-3
  20. P. Rai, C. Rai, G. C. Majumdara, S. D. Gupta, and S. De, "Resistance in series model for ultrafiltration of mosambi (Citrus sinensis (L.) Osbeck) juice in a stirred continuous mode", J. Membr. Sci., 283, 116 (2006). https://doi.org/10.1016/j.memsci.2006.06.018
  21. K. Katsoufidou, S. G. Yiantsios, and A. J. Karabelas, "A study of ultrafiltration membrane fouling by humic acids and flux recovery by backwashing: Experiments and modeling", J. Membr. Sci., 266, 40 (2005). https://doi.org/10.1016/j.memsci.2005.05.009
  22. J. Y. Park, S. J. Choi, and B. R. Park, "Effect of N2-back-flushing in multichannels ceramic microfiltration system for paper wastewater treatment", Desalination, 202, 207 (2007). https://doi.org/10.1016/j.desal.2005.12.056
  23. D. Chen, L. K. Weavers, and H. W. Walker, "Ultrasonic control of ceramic membrane fouling: Effect of particle characteristics", Water Research, 40, 840 (2006). https://doi.org/10.1016/j.watres.2005.12.031
  24. Y. J. Yuk and K. H. Youm, "Enhancement of ultrafiltration performance using ultrasound", Membrane Journal, 13(4), 283 (2003).
  25. W. F. Jones, R. L. Valentine, and V. G. J. Rodgers, "Removal of suspended clay from water using transmembrane pressure pulsed microfiltration", J. Membr. Sci., 157, 199 (1999). https://doi.org/10.1016/S0376-7388(98)00376-7
  26. F. Malek, J. L. Harris, and F. A. Roddick, "Interrelationship of photooxidation and microfiltration in drinking water treatment", J. Membr. Sci., 281, 541 (2006). https://doi.org/10.1016/j.memsci.2006.04.045
  27. H. C. Lee and J. Y. Park, "Advanced water treatment of high turbidity source by hybrid process of ceramic microfiltration and activated carbon adsorption: Effect of GAC packing fraction", Membrane Journal, 18(3), 191 (2008).
  28. H. C. Lee and J. Y. Park, "Advanced water treatment of high turbidity source by hybrid process of ceramic microfiltration and activated carbon adsorption: Effect of water-back-flushing time and period", Membrane Journal, 19(1), 7 (2009).
  29. H. C. Lee, J. Y. Park, and D. Y. Yoon, "Advanced water treatment of high turbidity source by hybrid module of ceramic microfiltration and activated carbon adsorption: Effect of organic/inorganic materials", Korean J. Chem. Eng., 26(3), 697 (2009). https://doi.org/10.1007/s11814-009-0116-8
  30. I. R. Bellobono, B. Barni, and F. Gianturco, "Preindustrial experience in advanced oxidation and integral photodegradation of organics in potable waters and waste waters by $PHOTOPERM^{TM}$ membranes immobilizing titanium dioxide and promoting photocatalysts", J. Membr. Sci., 102, 139 (1995). https://doi.org/10.1016/0376-7388(94)00273-2
  31. R. Molinari, C. Grande, E. Driloli, L. Palmisano, and M. Schiavello, "Photocatalytic membrane reactors for degradation of organic pollutants in water", Cata. Today, 37, 273 (2001).
  32. R. Molinari, F. Pirillo, M. Falco, V. Loddo, and L. Palmisano, "Photocatalytic degradation of dyes by using a membrane reactor", Chem. Eng. Proc., 43, 1103 (2004). https://doi.org/10.1016/j.cep.2004.01.008
  33. K. Azrague, E. Puech-Costes, P. Aimar, M. T. Maurette, and F. Benoit-Marquie, "Membrane photoreactor (MPR) for the mineralisation of organic pollutants from turbid effluents", J. Membr. Sci., 258, 71 (2005). https://doi.org/10.1016/j.memsci.2005.02.027
  34. M. Pidou, S. A. Parsons, G. Raymond, P. Jeffery, T. Stephenson, and B. Jefferson, "Fouling control of a membrane coupled photocatalytic process treating greywater", Wat. Res., 43, 3932 (2009). https://doi.org/10.1016/j.watres.2009.05.030
  35. D.-J. Kim, J.-Y. Kang, and K.-S. Kim, "Preparation of $TiO_{2}$ thin films on glass beads by a rotating plasma reactor", J. Ind. & Eng. Chem., 16, 997 (2010). https://doi.org/10.1016/j.jiec.2010.07.005
  36. Y. K. Yoon, "Removal characteristics of NOM by particle activated carbon and ozon/PAC in Han-river", Master Dissertation, U. of Seoul, Seoul, Korea (2007).
  37. J. Y. Jung, K. Y. Kang, D. H. Youn, Y. S. Kim, K. H. Suh, and J. H. Lim, "A study on the adsorption of natural organic matter by activated carbon from drinking water", J. Korean Ind. Eng. Chem., 14(8), 1127 (2003).
  38. M. Cheryan, "Ultrafiltration Handbook", pp. 89-93, Technomic Pub. Co., Lancater, PA (1984).