Effect of Salt Concentration on Electrolyte Membranes for Dye Sensitized Solar Cells

염료감응형 태양전지를 위한 고분자 전해질막에서의 이온농도의 효과

  • Kwon, So-Young (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Yun, Mi-Hye (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Cho, Doo-Hyun (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Jung, Yoo-Young (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Koo, Ja-Kyung (Department of Applied Chemical Engineering, Korea University of Technology and Education)
  • 권소영 (한국기술교육대학교 응용화학공학과) ;
  • 윤미혜 (한국기술교육대학교 응용화학공학과) ;
  • 조두현 (한국기술교육대학교 응용화학공학과) ;
  • 정유영 (한국기술교육대학교 응용화학공학과) ;
  • 구자경 (한국기술교육대학교 응용화학공학과)
  • Received : 2010.12.01
  • Accepted : 2011.03.24
  • Published : 2011.09.30

Abstract

Using poly(ethylene oxide) (PEO) as a polymer host, poly(ethylene glycol) (PEG) as a plasticizer, potassium iodide and iodine as sources of $I^-/I_3^-$, polymer electrolyte membranes were prepared. Based on the polymer electrolytes, solid-state dye-sensitized solar cell (DSSC)s were fabricated. The content of PEG in the electrolyte was controlled to be 95%. The mole number of KI per 1 mole of EO ([KI]/[EO] ratio) in the electrolyte was changed to be 0.022, 0.044, 0.066 and 0.088. The electrolyte membrane showed wax phase in ambient temperature. The ionic conductivity increased with increasing KI content to reach the maximum value at which [KI]/[EO] ratio is 0.066. After the maximum value, the ionic conductivity decreased with increasing KI content. In the case of DSSC, the Voc decreased continuously with increasing KI content in the polymeric electrolyte membrane. The $J_{SC}$ increased with increasing KI content to show maximum value at which [KI]/[EO] ratio is 0.044. In the higher KI content region, $J_{SC}$ value decreased with increasing KI content.

염료감응형 태양전지를 위한 겔 고분자 전해질막을 제조하였다. 고분자물질로는 Poly(ethylene oxide) (PEO)를 사용하였으며, 가소제로서 poly(ethylene glycol) (PEG)을 첨가하였고, 전해질염 및 $I^-/I_3^-$의 공급원으로서 KI 및 $I_2$를 첨가하여 고분자 전해질막을 제조하였으며, 이와 같은 고분자 전해질막을 바탕으로 염료감응형 태양전지를 제조하였다. 고분자 전해질 내의 가소제로서의 PEG는 95%의 함량으로 주입되었으며, 전해질 내의 EO 1 mole 당 KI mole 수([KI]/[EO] 비)가 0.022, 0.044, 0.066 및 0.088이 되도록 KI가 주입되었다. 이러한 방식으로 제조된 겔 전해질막은 상온에서 왁스(wax) 형태를 보였다. 낮은 KI 함량의 영역에서는 KI 함량이 증가하면서 전해질막을 통한 이온전도도가 증가하였으며, [KI]/[EO]비가 0.066인 때에 이온전도도는 최대값을 보인 후 0.088로 증가하면서 이온전도도는 감소하였다. 염료감응형 태양전지에 있어서는 고분자 전해질막 내의 KI 함량이 증가하면서 $V_{OC}$는 지속적으로 감소하였다. 반면, $J_{SC}$의 경우 낮은 KI 함량의 범위에서는 KI 함량이 증가하면서 $J_{SC}$는 증가하였으며 [KI]/[EO]비가 0.044인 때에 $J_{SC}$가 최대값을 보인 후 그 이상의 높은 범위에서는 KI함량의 증가에 따라 $J_{SC}$는 감소하였다.

Keywords

References

  1. A. Nishimoto, K. Agehara, and N. Furuya, "High Ionic Conductivity of Polyether-Based Network Polymer Electrolytes with Hyperbranched Side Chains", Macromolecules, 32, 1541 (1999). https://doi.org/10.1021/ma981436q
  2. D. J. Harris, T. H. Bonagamba, K. Schumidt-Rohr, P. P Soo, D. R. Sadoway, and A. M. Mayers, "Solid-State NMR Investigation of Block Copolymer Electrolyte Dynamics", Macromolecules, 35, 3772 (2002). https://doi.org/10.1021/ma0107049
  3. T. J. Cleij, L. W. Jenneskens, M. Wubbenhorst, and J. van Turnhout, "Comb. Branched Polymer Electrolytes Based on Poly & Isqb (4,7,10,13-tetraoxatetradecyl) methylsilane & rsqb; and Lithitun Per-cholrate", Macromolecules, 32, 8663 (1999). https://doi.org/10.1021/ma990997u
  4. X. Hou and K. S. Siow, "Ionic conductivity and electrochemical characterization of novel interpenetrating polymer network electrolytes", Solid State lonics, 147, 391 (2002). https://doi.org/10.1016/S0167-2738(02)00034-6
  5. F. Croce, G. B. Appetecchi, L. Persi, and B. Scrosati, "Nanocomposite polymer electrolytes for lithium batteries", Nature, 394, 456 (1998). https://doi.org/10.1038/28818
  6. S. Chintapalli and R. Frech, "of plasticizers on ionic association and conductivity in the$(PEO)_9LiCF_3 SO_3 $electrolyte", Macromolecules, 29, 3499 (1996). https://doi.org/10.1021/ma9515644
  7. M-S Kang, J. H. Kim, Y. J. Kim, J. Won, N. K. Park and Y. S. Kang, "Dye-sensitized solar cells based on composite solid polymer electrolytes", Chem. Comm., 2005 No. 7. 889 (2005) .
  8. J. H. Kim, B. R. Min, C. K. Kim, J. Won, and Y. S. Kang, "Role of Transient Cross-Links for Transport Properties in Silver-Polymer Electrolytes", Macromolecules, 34, 6052 (2001). https://doi.org/10.1021/ma0020032
  9. S. M. Zahurak, K. L. Kaplan, E. A. Rietman, D. W. Murphy, and R. J. Cava, Macromolecules, 21, 654 (1988). https://doi.org/10.1021/ma00181a020
  10. G. P. Kalaignam, M. S. Kang, and Y. S. Kang, "Effects of compositions on properties of PEO-KI-$I_2$ salts polymer electrolytes for DSSC", Solid State lonics, 177, 1091 (22006). https://doi.org/10.1016/j.ssi.2006.03.013
  11. G. Kastros, T Stergiopoulos, I. M. Arabatiz, G. K. Papadokostaki, and P. Falaras, "A solvent-free Polylmer/inorganic oxide electrolyte for high efficiency solid-state dye-sensitized solar cells", J. Photchem. Photobiol, 149, 191 (2002). https://doi.org/10.1016/S1010-6030(02)00027-8
  12. S. A. Ilperuma, M. A. K. L. Dissanyake, S. Somasunderam, and L. R. A. K. Bandara, "Photoelectrochemical solar cells with polyacrylonitrilebased and polyethylene oxide-based polymer electro1ytes", Sol. Energy Mater. Sol. Cells, 84, 117 (2004). https://doi.org/10.1016/j.solmat.2004.02.040
  13. J. Kang, W. Li, X. Wang, Y. Lin, X. Xiao, and S. Fang, "Polymer electrolytes from PEO and novel quaternary ammonium iodides for dye-sensitized solar cells", Electrochim. Acta, 48, 2487 (2003). https://doi.org/10.1016/S0013-4686(03)00290-1
  14. J.-J. Jeong, K.-S. Yoon, J.-K. Choi, and Y.-J. Kim, Y.-T. Hong, "Preparation and characterization of the $ H_3PO_4$-doped sulfonated poly(acryl ether benzimidazole) membranes for polymer electrolyte membrane fuel cell", Membrane Journal, 16, 276 (2006).
  15. J.-J. Woo, R.-Q. Fu, S-J Seo, S.-H. Yum, and S.-H. Moon, "Improvement of oxidative stability for non-fluorinated membranes prepared by substituted styrene monomers", Membrane Journal, 17, 294 (2007).
  16. G. Tongzhai and S.-J. Oh, "PVA/SSA/HPA Composite membranes on the application to polymer electrolyte membrane fuel cell", Membrane Journal, 16, 9 (2006).
  17. S. W. Cheon, J. H. Jun, J. W. Rhim, and S. Y. Nam, "Studies on the preparation of the poly(vinyl alcohol)ion exchange membranes for direct methanol fuel cell", Membrane Journal, 13, 191 (2003).
  18. J. H. Kim, M. S. Kang, Y. J. Kim, J. Won, and Y. S. Kang, "Poly(butyl acrylate)/ Nal/$I_2$ electrolyte for dye-sensitized nallocrystalline $TiO_2$ Solar cells", Solid State Ionics, 147, 579 (2005).
  19. X. Shen, W. Xu, J. Xu, G. Liang, H. Yang, and M. Yao, "Quasi-solid-state dye sensitized solar cells based on gel electrolytes containing different alkali metal iodide salts", Solid State Ionics, 179, 2027 (2008). https://doi.org/10.1016/j.ssi.2008.06.027
  20. J. H. Park, J. H. Yum, S.-Y. Kim, M.-S. Kang, Y.-G. Lee, S.-S. Lee, and Y. S. Kang, "Influence of salts on ionic diffusion in oligomer electrolytes and its implication in dye-sensitized solar cells", J. Photchem. Photobiol., 194, 148 (2008). https://doi.org/10.1016/j.jphotochem.2007.08.001
  21. M. J. Choi, C. H. Shin, T. Kang, J. K. Koo, and N. Cho, "A study on the organic/inorganic composite electrolyte membranes for dye sensitized solar cell", Membrane Journal, 18, 4, 345 (2008).
  22. D.-H. Cho, Y.-Y. Chung, M. H. Yun, S.-Y. Kwon, and J.-K. Koo, "Effect of plasticizer on electrolyte membranes for dye sensitized solar cells", Membrane Journal, 20, 1, 13 (2010).
  23. T. Kang, C.-H. Shin, M.-J. Choi, J.-K. Koo, and N. Cho, "A Study on the Ionic Conducting Characteristics of Electrolyte Membranes Containing KI and $I_2$ for Dye Sensitized Solar Cell", Membrane Journal, 20, 1, 21 (2010).
  24. N. Papageorgiou, W. Maier, and M. Gra¨tzel, "An iodine/triiodide reduction electrocatalyst for aqueous and organic media", J. Electrochem. Soc. 144, 876 (1997) https://doi.org/10.1149/1.1837502
  25. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry, E. Muller, and M. Gratzel, "Conversion of light to electricity by cis-$X_2$ bis(2, 20-bipyridyl-4, 40-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X=Cl, Br, I, CNandSCN) on nanocrystalline titanium dioxide electrodes", J. Am. Chem. Soc. 115, 6382 (1993). https://doi.org/10.1021/ja00067a063
  26. Y. Liu, A. Hagfeldt, X.-R. Xiao, and X.-E. Lindquist, "Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous $TiO_2$ solar cell", Solar Energy Mater. Solar Cells, 55, 267 (1998). https://doi.org/10.1016/S0927-0248(98)00111-1
  27. A. Kelly, F. Farzad, and W. Thompson, J. M. Stipkala, and G. J. Meyer, "Cation-Controlled Interfacial Charge Injection in Sensitized Nanocry stalline $TiO_2$", Langmuir, 15, 7047 (1999). https://doi.org/10.1021/la990617y