The Effect of Filling Step on the Removal Efficiency and Filtration Performance in the Operation of Submerged Membrane-Coupled Sequencing Batch Reactor

침지형 막결합 연속회분식 반응기의 운전에서 폐수의 도입단계가 제거효율과 여과성능에 미치는 영향

  • Kim, Seung-Geon (Dept. of Food Bioengineering, Jeju National University) ;
  • Lee, Ho-Won (Dept. of Chemical and Biological Engineering, Jeju National University) ;
  • Kang, Yeung-Joo (Dept. of Food Bioengineering, Jeju National University)
  • 김승건 (제주대학교 식품생명공학과) ;
  • 이호원 (제주대학교 생명화학공학과) ;
  • 강영주 (제주대학교 식품생명공학과)
  • Received : 2011.09.06
  • Accepted : 2011.09.23
  • Published : 2011.09.30

Abstract

In the operation of submerged membrane-coupled sequencing batch reactor, the effect of filling step on the removal efficiency and filtration performance were investigated. Two sets of operation modes, the filling step located in the beginning of aerobic step (Mode-1) and the beginning of anoxic step (Mode-2), during 89 days were conducted. There was no wide difference in the COD removal and filtration performance between two sets of operation modes. But in the removal efficiency of nutrients (total nitrogen and total phosphorous), Mode-2 was more effective than Mode-1. In the case of Mode-2, average removal efficiencies of COD, total nitrogen, and total phosphorous were 99.1, 73.3, and 77.3%, respectively.

침지식 막결합형 연속회분식 생물반응기에서 폐수의 도입단계가 제거효율과 여과성능에 미치는 영향을 조사하였다. 호기성 단계의 초기에 공급할 경우(Mode-1)와 무산소 단계의 초기에 공급할 경우(Mode-2)에 대하여 89일 동안 동시에 운전하였다. COD 제거효율과 여과성능은 2가지 운전방식 간에 큰 차이가 없었다. 그러나 영양염류(총질소와 총인)의 제거효율에 있어서 Mode-2가 Mode-1에 비해 보다 효과적이었다. Mode-2의 경우 COD, 총질소 및 총인의 제거율은 각각 99.1, 73.3 및 77.7%이었다.

Keywords

References

  1. J. K. Shim and K. Y. Chung, "Application of Membrane Bioreactor in Water Treatment", NICE, 20(6), 721 (2002).
  2. H. W. Lee, S. G. Kim, and S. S. Khang, "The effect of operation modes on filtration performance and removal efficiency in a flat-sheet membrane coupled sequencing batch reactor", J. of KSEE, 29(10), 1138 (2007).
  3. J. Y. Han, "Removal characteristics of nitrogen and phosphorus in sewage by change of operating conditions on SBR process", M.S. Dissertation, Jeju National Univ., Jeju (1998).
  4. . C. Ma, "Effect of physicochemical characteristics of microbial flocs on membrane performance in membrane-coupled sequencing batch reactor with and without anoxic phase", M.S. Dissertation, Seoul National Univ., Seoul (2004).
  5. B. Arrojo, A. Mosquera-Corra, J. M. Garrido, R. Mendez, E. Ficara, and F. Malpei, "A membrane coupled to a sequencing batch reactor for water reuse and removal of coliform bacteria", Desalination, 170, 109 (2005).
  6. K. Y. Ryu, B. K. Park, and C. H. Lee, "Filtration performance in MSBR (membrane-coupled sequencing batch reactor) using a membrane for both filtration and aeration", J. of KSWQ, 21(4), 337 (2005).
  7. S. G. Kim, H. W. Lee, and Y. J. Kang, "Nutrient removal characteristics on organic material loading in submerged flat sheet type sequencing batch membrane reactor", Membrane Journal, 20(3), 241 (2010).
  8. J. A. Howell, H. C. Chua, and T. C. Arnot, "In situ manipulation of critical flux in a submerged membrane bioreactor using variable aeration rate, and effects of membrane history", J. Membrane Sci., 242, 13 (2004). https://doi.org/10.1016/j.memsci.2004.05.013
  9. Y. K. Choi, O. S. Kwon, H. S. Park, and S. H. Noh, "Mechanism of gell layer removal for intermittent aeration in the MBR process", Membrane Journal, 16(3), 188 (2006).
  10. APHA, "Standard Methods for the Examination of Water and Wastewater", 21th ed., pp. 55-59, American Public Health Association, Washington D. C. (2005).
  11. C. Psoch and S. Schiewer, "Resistance analysis for enhanced wastewater membrane filtration", J. Membr. Sci., 280, 284 (2006). https://doi.org/10.1016/j.memsci.2006.01.030
  12. H. Nagaoka, S. Yamanishi, and A. Miya, "Modeling of Biofouling by Extracellular Polymers in a Membrane Separation Activated Sludge System", Wat. Sci. Tech., 38(4-5), 497 (1998). https://doi.org/10.1016/S0273-1223(98)00550-2
  13. G. Bitton, "Wastewater Microbiology", 3th ed., p. 226, John Wiley & Sons, Hoboken, New Jersey (2005).
  14. T. Kuba, G. Smolders, M. C. M. Van Loosdrecht, and J. J. Heijnen, "Biological Phosphorus Removal from Wastewater by Anaerobic-Anoxic Sequencing Batch Reactor", Wat. Sci. Tech., 27(5-6), 241 (1993).
  15. G. D. Whang and S. H. Bae, "The effect on the attached growth in aerobic reactor on nitrogen removal in$A^2/O$ process", J. of KSWQ, 22(6), 1022 (2006).
  16. S. Yang, F. Yang, Z. Fu, and R. Lei, "Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on organic carbon and nitrogen removal", Bioresour. Technol., 100, 2369 (2009). https://doi.org/10.1016/j.biortech.2008.11.022
  17. H. Nagaoak and C. Kudo, "Effect of loading rate and intermittent aeration cycle on nitrogen removal in membrane separation activated sludge process", Wat. Sci. Tech., 46(8), 119 (2002).
  18. H. S. Kim, H. Katayama, S. Takizawa, and S. Ohgaki, "Development of a microfilter separation system coupled with a high dose of powdered activated carbon for advanced water treatment", Desalination, 186, 215 (2005). https://doi.org/10.1016/j.desal.2005.06.004
  19. J. Y. Jang and Y. M. Lee, "Application of ENVIS${\circledR}$ MEMBRANE SYSTEM(submerged flat sheet MF membrane)", Membrane Journal, 15(3), 241 (2005).