Developmental Trend of Polyimide Membranes for Gas Separation

Polyimide계 기체분리막의 개발 동향

  • Oh, Dae-Youn (School of Materials Science and Engineering, Engineering Research Institute, i-Cube Center, Gyeongsang National University) ;
  • Nam, Sang-Yong (School of Materials Science and Engineering, Engineering Research Institute, i-Cube Center, Gyeongsang National University)
  • 오대윤 (경상대학교 나노.신소재공학부, 공학연구원, 아이큐브 사업단) ;
  • 남상용 (경상대학교 나노.신소재공학부, 공학연구원, 아이큐브 사업단)
  • Received : 2011.12.20
  • Accepted : 2011.12.26
  • Published : 2011.12.20

Abstract

Polymeric gas separation membrane is the fastest growing field in membrane separation process. Polymeric gas separation membrane process is competitive compare to cryogenic process and pressure swing adsorption process. Aromatic polymer materials such as polysulfones, polypheneylene oxides, polycarbonates and polyimides have been used for gas separation. Recently, glassy polymer likes polyimide in aromatic polymers has been developed for achievement of high selectivity and permeability coefficients. The accurate understanding on a type and structure of polymer material is very important, because the factor that polymer material affect gas separation property. In the study, trend and the development direction on synthesis and permeation properties of polyimide is confirmed.

고분자 기체분리막은 막분리 공정에서도 가장 빠르게 발전하고 있는 분야이다. 고분자 기체 분리막 공정은 심냉법, 가압 기체 흡착법과 견주어 볼 때 경쟁력을 지니고 있다. 기체분리용 고분자 소재로는 폴리술폰, 폴리페닐렌옥사이드, 폴리카보네이트, 폴리이미드 등의 방향족 고분자들이 주로 사용되었다. 현재 이 중에서도 유리상 고분자인 폴리이미드의 경우 높은 투과도와 선택도를 달성하기 위해 많은 연구가 이루어지고 있다. 고분자 소재는 기체분리 성능에 많은 영향을 미치는 요인이기 때문에 기체분리용 고분자 소재와 구조에 대한 올바른 이해가 중요시되고 있다. 본 논문에서는 폴리이미드 제조 및 기체투과 특성에 대한 동향 및 개발 방향에 대해 확인하였다.

Keywords

References

  1. E. C. Gregor, G. B. Tanny, E. Shchori, and Y. Kenigsberg, "UNBEAM PROCESS$^{TM}$ Microporous Membranes; A High Performance Barrier for Protective Clothing", J. Ind. Text., 18, 26 (1988).
  2. V. D. Alves, B. Koroknai, K. Belafi-Bako, and I. M. Coelhoso, "Using membrane contactors for fruit juice concentration", Desalination, 162, 263 (2003).
  3. R. Nagel and T. Will, "Membrane Processes for Water Treatment in the Semiconductor Industry", Ultrapure Water, 16, 35 (1999).
  4. B. Smitha, S. Sridhar, and A. A. Khan, "Solid polymer electrolyte membranes for fuel cell applications-a review", J. Membr. Sci., 259, 10 (2005). https://doi.org/10.1016/j.memsci.2005.01.035
  5. W. J. Koros and G. K. Fleming, "Membrane-based gas separation", J. Membr. Sci., 83, 1 (1993). https://doi.org/10.1016/0376-7388(93)80013-N
  6. H. B. Park, C. H. Jung, Y. M. Lee, A. J. Hill, S. J. Pas, S. T. Mudie, E. V. Wagner, B. D. Freeman, and D. J. Cookson, "Polymers with cavities tuned for fast selective transport of small molecules and ions", Science, 318, 254 (2007). https://doi.org/10.1126/science.1146744
  7. H. Strathmann, "Membrane separation processes", J. Membr. Sci., 9, 121 (1981). https://doi.org/10.1016/S0376-7388(00)85121-2
  8. M. Mulder, "Basic Principles of Membrane Technology", Kluwer Academic, Dordrecht, (2000).
  9. R. W. Spillman, "Membrane Separation Technology, Principles and Applications", Elsevier, Amsterdam, (1995).
  10. L. M. Robeson, "Correlation of separation factor versus permeability for polymeric membranes", J. Membr. Sci., 62, 165 (1991). https://doi.org/10.1016/0376-7388(91)80060-J
  11. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  12. N. N. Li, W. S. W. Ho, A. G. Fane, and T. Matsuura, "Advanced Membrane Technology and Applications", John Wiley & Sons, Inc., New Jersey, (2008).
  13. P. Bernardo, E. Drioli, and G. Golemme, "Membrane gas separation : a review/state of the art", Ind. Eng. Chem. Res., 48, 4638 (2009). https://doi.org/10.1021/ie8019032
  14. K. U. Buhler, "Spezialplaste", Berlin, (1978).
  15. H. Ohya, V. V. Kudryavtsev, and S. I. Semenova, "Polyimide membranes", Gordon and Breach, (1996).
  16. C. E. Sroog, A. L. Endrey, S. V. Abramo, C. E. Berr, W. M. Edward, and K. L. Olivier, "Part A", J. Membr. Sci., 3, 1373 (1965).
  17. F. W. Harris, "Polyimides", New York, (1990).
  18. T. Takekoshi, "Polyimides-Fundamentals and Application, New York (1996)
  19. M. I. Bessonov, M. M. Koton, V. V. Kudryavtsev, and L. A. Laius, "Polyimides: Thermally Stable Polymers", New York (1987)
  20. T. H. Bea, J. Liu, J. S. Lee, W. J. Koros, C. W. Jones, and Sankar Nair, "Facile high-yield solvothermal deposition of inorganic Nanostructures on zeolite crystals for mixed matrix membrane fabrication", J. Am. Chem. Soc., 131, 14662. (2009). https://doi.org/10.1021/ja907435c
  21. D. M. Sterescu, D. F. Stamatialis, and M. Wessling, "Bolton-modified polyimide gas separation membrane", J. Membr. Sci., 310, 512 (2007).
  22. M. D. Guiver, G. P. Robertson, Y. Dai, F. Bilodeau, Y. S. Kang, K. J. Lee, J. Y. Jho, and J. G. Won, "Structural characterization and gas-transport properties of brominated matrimide polyimide", J. Membr. Sci., 40, 4193 (2002).
  23. http://en.wikipedia.org/wiki/Kapton, December 7 (2011).
  24. S. Choia, J. Coronasa, Z. Laia, D. Yusta, F. Onoratoc, and Michael Tsapatsisa, "Fabrication and gas separation properties of polybenzimidazole (PBI)/nanoporous silicates hybrid membranes", J. Membr. Sci., 316, 145, (2008). https://doi.org/10.1016/j.memsci.2007.09.026
  25. M. Wessling, S. Schoeman, Th. van der Boomgaard and C. A. Smolders, "Plasticization of gas separation membranes", Sep. Purif. Technol., 5, 222, (1991). https://doi.org/10.1016/0950-4214(91)80028-4
  26. L. Cui, W. Qiu, D. R. Paul, and W. J. Koros, Physical aging of 6FDA-based polyimide membranes monitored by gas permeability", Polymer, 52, 3374, (2011). https://doi.org/10.1016/j.polymer.2011.05.052
  27. C. C. Chena, W. Qiua, S. J. Miller, and W. J. Korosa, Plasticization-resistant hollow fiber membranes for $CO_{2}/CH_{2}$ separation based on a thermally crosslinkable polyimide", J. Membr. Sci., 382, 212 (2011). https://doi.org/10.1016/j.memsci.2011.08.015
  28. M. Askari, Y. Xiao, P. Li, and T. S. Cjung, "Natural gas purification and olefin/paraffin separation using cross-linkable 6FDA-Durene/DABA co-polyimides grafted with ${\alpha}$, ${\beta}$ and ${\gamma}$-cyclodextrin", J. Membr. Sci., In press (2011).
  29. F. Dorosti, M. R. Omidkhah, M. Z. Pedram, and F. Moghadam, "Fabrication and characterization of polysulfone/polyimide-zeolite mixed matrix mem brane for gas separation", Chem. Eng. J., 171, 1469 (2011). https://doi.org/10.1016/j.cej.2011.05.081
  30. C. A. Scholes, S. E. Kentish, and G. W. Stevens, "Carbon Dioxide Separation through Polymeric Membrane Systems for Flue Gas Applications", Recent Patents on Chemical Engineering, 1, 52, (2008). https://doi.org/10.2174/2211334710801010052
  31. Y. J. Cho and H. B. Park, "High performance of polyimide with internal free volume Elements", Macromol. Rapid Commun., 32, 579, (2011). https://doi.org/10.1002/marc.201000690
  32. Y. H. Kim, H. S. Kim, and S. K. Kwon, "Synthesis and Characterization of Highly Soluble and Oxygen Permeable New Polyimides Based on Twisted Biphenyl Dianhydride and Spirobifluorene Diamine", Macromolecules, 38, 7950 (2005). https://doi.org/10.1021/ma047433x
  33. S. Kazama, S. Morimoto, S. Tanaka, H. Mano, T. Yashima, K. Yamada, and K. Haraya, "Carodo polyimide membranes for $CO_{2}$ capture from flue gases", Proceedings of 7th International Conference on Greenhouse Gas Control Technologies, Cheltenham, UK (2004).
  34. H. B. Park, S. H. Han, C. H. Jung, Y. M. Lee, and A. J. Hill, "Thermally reaaranged (TR) polymer membranes for $CO_{2}$ separation", J. Membr. Sci., 359, 11 (2010). https://doi.org/10.1016/j.memsci.2009.09.037