Effect of Polymer Structure on Membrane Morphology by Addition of 2-butoxyethanol

2-butoxyethanol 첨가에 따른 고분자 구조가 분리막 구조에 미치는 영향

  • Son, Ye-Ji (Department of Environmental Engineering, Dong-Eui University) ;
  • Kim, No-Won (Department of Environmental Engineering, Dong-Eui University)
  • Received : 2011.12.08
  • Accepted : 2011.12.28
  • Published : 2011.12.20

Abstract

Flat sheet microfiltration membranes were prepared with polysulfone (PSF), polyethersulfone (PES), and polyphenylsulfone (PPS) by an immersion precipitation phase inversion method. In this method, dimethyl formamide (DMF) and polyvinylpyrrolidone (PVP) were used as a solvent and a wetting polymer additive, respectively. 2-butoxyethanol (BE) was used as a nonsolvent additive catalyst to form pore. The morphology of membranes was investigated by scanning electron microscopy and micropermporometer. The permeability of the membranes was evaluated with the flux of pure water. When the BE was added, the pore size of membranes became larger than blank membranes. The changes in the morphology of membrane due to the BE addition depend on polymer structure. All membranes have similar mean pore size and porosity. The mean pore sizes of PSF, PES, and PPS membranes were 0.282, 0.330 $0.308{\mu}m$, respectively. The porosities of PSF, PES and PPS membranes were 68.5, 66.1, 66.4%, respectively. However, the PPS membrane showed higher pore density on surface and narrower pore size distribution than PSF or PES membrane does. As a result, the pure water flux of PPS membrane ($357L/m^2\;hr$) was higher than that of PSF ($196L/m^2\;hr$) or PES membrane ($214L/m^2\;hr$).

침지법을 이용한 상전이 공정으로 polysulfone (PSF), polyethersulfone (PES) and polyphenylsulfone (PPS)의 정밀여과 평막을 제조하였다. 용매로는 dimethyl formamide (DMF)를, 습윤제 고분자로는 polyvinylpyrrolidone (PVP)를 사용하였으며 pore 형성 촉매로 2-butoxyethanol (BE)을 사용하였다. 얻어진 분리막들은 SEM과 micro permporometer를 이용하여 morphology를 분석하였으며 순수투과도를 측정하여 분리막의 투과성능을 측정하였다. BE의 첨가를 통하여 분리막의 기공을 성장시킬 수 있었으며 고분자 구조에 따라 분리막의 morphology 변화를 관찰할 수 있었다. PSF, PES, PPS 분리막의 평균기공의 크기는 각각 0.282, 0.330, $0.308{\mu}m$이었으며 공극률은 68.5, 66.1, 66.4%로 유사한 값을 나타내었다. 그러나 PPS 분리막의 경우 PSF, PES 분리막에 비해 높은 기공 밀도와 좁은 기공 분포를 관찰할 수 있었다. 그 결과 PPS 분리막의 순수 투과 유량은 $357L/m^2\;hr$으로 PSF ($196L/m^2\;hr$)나 PES membrane ($214L/m^2\;hr$) 분리막에 비해 훨씬 증가함을 보였다.

Keywords

References

  1. M. Mulder, "Basic Principles of Membrane Technology", pp. 86-99, Kluwer Academic Publishers (1991).
  2. R. M. Boom, I. M. Wienk, Th. Van den Boomgaard, and C. A. Smolders, "Microstructures in phase inversion membranes. Part 2. The role of a polymeric additive", J. Membr. Sci., 73, 277 (1992). https://doi.org/10.1016/0376-7388(92)80135-7
  3. I. M. Wienk, R. M. Boom, M. A. M. Beerlage, A. M. W. Bulte, and C. A. Smolders, "Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers", J. Membr. Sci., 113, 361 (1996). https://doi.org/10.1016/0376-7388(95)00256-1
  4. D. B. Mosqueda-Jimenez, R. M. Narbaitz, T. Matsuura, G. Chowdhury, G. Pleizier, and J. P. Santerre, "Influence of processing conditions on the properties of ultrafiltration membranes", J. Membr. Sci., 231, 209 (2004). https://doi.org/10.1016/j.memsci.2003.11.026
  5. S.-J. Shin, J.-P. Kim, H.-J. Kim, J.-H. Jeon, and B.-R. Min, "Preparation and characterization of polyethersulfone microfiltration membranes by a 2-methoxyethanol additive", Desalination, 186, 1 (2005). https://doi.org/10.1016/j.desal.2005.03.092
  6. C. Stropnik and V. Kaiser, "Polymeric membranes preparation by wet phase separation: Mechanisms and elementary processes", Desalination, 145, 1 (2002). https://doi.org/10.1016/S0011-9164(02)00322-3
  7. R. M. Boom, T. van den Boomgard, and C. A. Smolders, "Mass transfer and thermodynamics during immersion precipitation for a two-polymer system: evaluation with the system PES-PVP-NMPwater", J. Membr. Sci., 90, 231 (1994). https://doi.org/10.1016/0376-7388(94)80074-X
  8. D. Rana, T. Matsuura, R. M. Narbaitz, and C. Feng, "Development and characterization of novel hydrophilic surface modifying macromolecule for polymeric membranes", J. Membr. Sci., 249, 103 (2005). https://doi.org/10.1016/j.memsci.2004.09.034
  9. V. P. Khare, A. R. Greenberg, and W. B. Krantz, "Vapor-induced phase separation-effect of the humid air exposure step on membrane morphology: Part I. Insights from mathematical modeling", J. Membr. Sci., 258, 140 (2005). https://doi.org/10.1016/j.memsci.2005.03.015
  10. B. Chakrabarty, A. K. Ghoshal, and M. K. Purkait, "Effect of molecular weight of PEG on membrane morphology and transport properties", J. Membr. Sci., 309, 209 (2008). https://doi.org/10.1016/j.memsci.2007.10.027
  11. Y. Ma, F. Shi, M. Wu, J. Zhang, and C. Gao, "Effect of PEG additive on the morphology and performance of polysulfone ultrafiltration membranes", Desalination, 272, 51 (2011). https://doi.org/10.1016/j.desal.2010.12.054
  12. D. Ranaa, T. Matsuuraa, and R. M. Narbaitzb, "Novel hydrophilic surface modifying macromolecules for polymeric membranes: Polyurethane ends capped by hydroxy group", J. Membr. Sci., 282, 205 (2006). https://doi.org/10.1016/j.memsci.2006.05.024
  13. M.-J. Han, "Effect of propionic acid in the casting solution on the characteristics of phase inversion polysulfone membranes", Desalination, 121, 31 (1999). https://doi.org/10.1016/S0011-9164(99)00005-3
  14. N. Kim, C.-S. Kim, and Y.-T. Lee, "Preparation and characterization of polyethersulfone membranes with p-toluenesulfonic acid and polyvinylpyrrolidone additives", Desalination, 233, 218 (2008). https://doi.org/10.1016/j.desal.2007.09.046
  15. B. G. Park, S.-H. Kong, and S. Y. Nam, "Phase behavior and morphological studies of polysulfone membranes; The effect of alcohols used as a nonsolvent coagulant", Membrane Journal, 15, 272 (2005).
  16. M. Han, "Effect of nonsolvent additive in casting solutions on polysulfone membrane preparation", Membrane Journal, 6, 157 (1996).
  17. I.-F. Wang, R. A. Morris, and R. F. Zepf, "Highly asymmetric, hydrophilic, microfiltration membranes having large pore diameters", U.S. Patent 6,565,782 (2003).
  18. M. S. Lee and K. H. Youm, "Preparation of PES-$TiO_{2}$ hybrid membranes and evaluation of membrane properties", Membrane Journal, 17, 219 (2007).
  19. S.-J. Shin, J.-P. Kim, H.-J. Kim, J.-H. Jeon, and B.-R. Min, "Preparation and characterization of polyethersulfone microfiltration membranes by a 2-methoxyethanol additive", Desalination, 186, 1 (2005). https://doi.org/10.1016/j.desal.2005.03.092
  20. N. Kim, "Effect of 2-butoxyethanol additive in the casting solution on the characteristics of nonsolvent vapor induced phase inversion PES membranes", Membrane Journal, 20, 76 (2010).
  21. A. Idris, N. M. Zain, and M. Y. Noordin, Synthesis, characterization and performance of asymmetric polyethersulfone (PES) ultrafiltration membranes with polyethylene glycol of different molecular weights as additives, Desalination, 207, 324 (2007). https://doi.org/10.1016/j.desal.2006.08.008
  22. http://www.solvaysites.com/sites/solvayplastics, February 4 (2004).