DOI QR코드

DOI QR Code

Damage Tolerance Analysis Using Surrogate Model

근사모델을 사용한 손상허용해석

  • 장병욱 (한국항공대학교 대학원) ;
  • 임재혁 (한국항공우주연구원) ;
  • 박정선 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2011.01.10
  • Accepted : 2011.03.29
  • Published : 2011.04.01

Abstract

The damage tolerance analysis is required to guarantee the structural safety and the reliability for aircraft components. The damage tolerance method, which evaluate the life considering the initial crack, considers a fatigue design model of the aircraft main structure. The fatigue crack growth life should be calculated in damage tolerance analysis and the inspection time to define the replacement cycle. In this paper, the damage tolerance analysis is performed for a turbine wheel which has complex geometry. The equation of the stress intensity factor for complex geometry is hard to know, so that they are usually processed by finite element analysis which takes long time. To solve this problem, the stress intensity factors at specified crack are obtained by the FEA and the crack growth life is evaluated using the surrogate model which is generated by the regression analysis of the FEA data. From the results, the efficiency of the crack growth life calculation and the damage tolerance analysis could be increased by taking the surrogate model.

항공기 부품에 대한 손상허용해석은 구조적 안전성 및 신뢰성 보장을 위해 면밀히 평가되어야한다. 손상허용기법은 항공기 주구조의 피로 설계기법으로 초기균열의 존재를 고려하여 피로수명을 산정한다. 따라서 손상허용해석에서는 피로 균열성장 수명의 계산이 요구되며, 이를 바탕으로 부품의 점검시간 및 교체주기를 결정한다. 본 논문에서는 형상이 복잡한 터빈 휠에 대하여 손상허용해석을 수행하였다. 형상이 복잡한 구조의 균열성장수명평가 시에는 주요 변수인 응력확대계수의 식을 알기 어려워, 이를 유한요소해석으로 계산하므로 많은 시간이 요구된다. 이러한 문제를 해결하고자 특정 균열길이에 대한 응력확대계수를 유한요소해석으로 계산하고, 생성된 데이터의 회귀분석을 통해 응력확대계수의 근사모델을 생성하였다. 균열성장 수명은 근사모델의 적분으로 계산하였으며, 근사모델을 사용하여 균열성장 수명평가와 손상허용해석의 효율을 높일 수 있었다.

Keywords

References

  1. Bannantine, J. A., Comer, J. J., and Handrock, J. L., Fundamentals of Metal Fatigue Analysis, Prentice Hall, 1989.
  2. Farmer, T. E., "Damage Tolerance Concept for Advanced Engine", AIAA, ASME, SAE and ASEE, Joint Propulsion Conference, 24th, AIAA-1988-3165, 1988, pp. 6-10.
  3. Anderson, T. L., Fracture Mechanics: Fundamental and Applications, Third edition, CRC Press, 2005.
  4. Wheeler, O. E., "Spectrum Loading and Crack Growth", Trans. ASME, J. Basic Eng., Vol. D94, 1972, pp. 181-186.
  5. Willenborg, J., Engle, R. M., and Wood, H. A., "A Crack Growth Retardation Model Using an Effective Stress Concept", AFFDL TM-71-1-FBR, 1971.
  6. Elber, W., "The Significance of Fatigue Crack Closure. Damage Tolerance in Aircraft Structure", ASTM STP, Vol. 486, 1971.
  7. Newman, J. C., "Advances in Fatigue Life Prediction Methodology for Metallic Material", NASA TM-107676, 1992.
  8. Willson, D. G, The Design of High-Efficiency Turbomachinery and Gas Turbine, Fourth edition, MIT Press, 1989.
  9. 김경희, 김현재, 전승배, 김춘택, "스캘럽 형상을 가진 래디얼 터어빈 휠 균열진전 평가", 제1회 헬기심포지움, 2007.
  10. Federal Aviation Administration Advisory Circular, AC-29.571, Fatigue Tolerance Evaluation of Metallic Structure, 2005.
  11. Mercer, C., Soboyejo, A.B.O. and Soboyejo W.O., "Micromechanisms of Fatigue Crack Growth in a Forged Inconel 718 Nickel-Based Superalloy", Material Science and Engineering A, Vol. 270, Issue 2, 1999.
  12. ABAQUS Theory Manual Ver. 6.9, SIMULIA Corp, 2009.
  13. U.S. Department of Transportation, Federal Aviation Administration, DOT/FAA/AR-00/64, Turbine Rotor Material Design, 2000.
  14. Department of Defense Handbook, MIL-HDBK-1783, Engine Structural Integrity Program(ENSIP), 1999.

Cited by

  1. Reliability Estimation for Crack Growth Life of Turbine Wheel Using Response Surface vol.40, pp.4, 2012, https://doi.org/10.5139/JKSAS.2012.40.4.336