DOI QR코드

DOI QR Code

실리콘 스핀트로닉스

Silicon Spintronics

  • 투고 : 2011.04.08
  • 심사 : 2011.04.14
  • 발행 : 2011.04.30

초록

반도체 스핀트로닉스는 자성체와 반도체를 결합하여 반도체 내에서의 전자 스핀을 이용하는 새로운 형태의 자성체-반도체 융합기술이며, 스핀 트랜지스터는 반도체 스핀트로닉스의 대표적인 소자이다. 이 소자를 실현하면, 반도체 내에 전자 스핀을 주입, 제어, 검출함으로써, 한 소자 내에서 정보처리와 정보저장을 동시에 수행할 수 있을 것으로 기대된다. 특히, 반도체 산업의 주축 물질인 실리콘을 이용하여 스핀 트랜지스터를 실현한다면, 이는 정보 산업에 중대한 영향을 미칠 것으로 예상된다. 이 글에서는 최근 실리콘 스핀트로닉스 분야에서의 주요한 진전을 소개하고, 앞으로의 기술적 과제에 대하여 간단히 기술하고자 한다.

Semiconductor spintronics is an emerging interdisciplinary technology based on the electron spin degree of freedom, combining the magnetic materials and semiconductors. The spin transistor represents a novel semiconductor device, in which the electron spin is injected, manipulated, and detected, and thereby a memory function and data processing function are enabled in one device. Particularly, the spin transistor based on Silicon, the mainstream semiconductor, might have a significant impact on information technology. This review introduces the major progresses of Silicon spintronics in recent years, and describes the technical issues for the future.

키워드

참고문헌

  1. A. Fert, Rev. Mod. Phys. 80, 1517 (2008). https://doi.org/10.1103/RevModPhys.80.1517
  2. C. Chappert, A. Fert, and F. N. van Dau, Nature Mater. 6, 813 (2007). https://doi.org/10.1038/nmat2024
  3. M. H. Kryder and C. S. Kim, IEEE Trans. Magn. 45, 3406 (2009). https://doi.org/10.1109/TMAG.2009.2024163
  4. S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990). https://doi.org/10.1063/1.102730
  5. H. C. Koo et al., Science 325, 1515 (2009). https://doi.org/10.1126/science.1173667
  6. S. Sugahara, IEE Proc. Circuits Devices Syst. 152, 355 (2005). https://doi.org/10.1049/ip-cds:20045196
  7. B. C. Min et al., Nature Mater. 5, 17 (2006). https://doi.org/10.1038/nrd1933
  8. I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004). https://doi.org/10.1103/RevModPhys.76.323
  9. I. Appelbaum et al., Nature 447, 295 (2007). https://doi.org/10.1038/nature05803
  10. S. P. Dash et al., Nature 462, 491 (2009). https://doi.org/10.1038/nature08570
  11. M. Tanaka and S. Sugahara, IEEE Trans. Electron Dev. 54, 961 (2007). https://doi.org/10.1109/TED.2007.894375
  12. S. Sugahara and J. Nitta, Proc. IEEE 98, 2124 (2010). https://doi.org/10.1109/JPROC.2010.2064272
  13. T. Matsuno, Jpn. J. Appl. Phys. 43, 6032 (2004). https://doi.org/10.1143/JJAP.43.6032
  14. G. Schmidt et al., Phys. Rev. B 62, R4790 (2000). https://doi.org/10.1103/PhysRevB.62.R4790
  15. E. I. Rashba, Phys. Rev. B 62, R16267 (2000). https://doi.org/10.1103/PhysRevB.62.R16267
  16. A. Fert and H. Jaffres, Phys. Rev. B 64, 184420 (2001). https://doi.org/10.1103/PhysRevB.64.184420
  17. S. M. Sze, Physics of Semiconductor Devices, 2nd edition, Wiley, New York (1981).
  18. B. G. Park et al., Phys. Rev. Lett. 99, 217206 (2007). https://doi.org/10.1103/PhysRevLett.99.217206
  19. S. O. Valenzuela et al., Phys. Rev. Lett. 94, 196601 (2005). https://doi.org/10.1103/PhysRevLett.94.196601
  20. R. Jansen, B. C. Min, and S. P. Dash., Nature Mater. 9, 133 (2010). https://doi.org/10.1038/nmat2605
  21. R. Jansen et al., Phys. Rev. B 82, 241305(R) (2010). https://doi.org/10.1103/PhysRevB.82.241305
  22. B. T. Jonker, Proc. IEEE 91, 727 (2003). https://doi.org/10.1109/JPROC.2003.811802
  23. W. Van Roy et al., IEEE Trans. Electron Dev. 54, 933 (2007). https://doi.org/10.1109/TED.2007.894365
  24. X. H. Lou et al., Nature Phys. 3, 197 (2007). https://doi.org/10.1038/nphys543
  25. X. H. Lou et al., Phys. Rev. Lett. 96, 176603 (2006). https://doi.org/10.1103/PhysRevLett.96.176603
  26. M. Tran et al., Phys. Rev. Lett. 102, 036601 (2009). https://doi.org/10.1103/PhysRevLett.102.036601
  27. B. T. Jonker et al., Nature Phys. 3, 542 (2007). https://doi.org/10.1038/nphys673
  28. D. J. Monsma, R. Vlutters, and J. C. Lodder, Science 281, 407 (1998). https://doi.org/10.1126/science.281.5375.407
  29. R. Jansen, Journal of Physics D: Applied Physics 36, R289 (2003). https://doi.org/10.1088/0022-3727/36/19/R01
  30. B. Huang, D. J. Monsma, and I. Appelbaum, Phys. Rev. Lett. 99, 177209 (2009).
  31. H. J. Jang and I. Appelbaum, Phys. Rev. Lett. 103, 117202 (2009). https://doi.org/10.1103/PhysRevLett.103.117202
  32. F. J. Jedema, A. T. Filip, and B. J. van Wees, Nature 410, 345 (2001). https://doi.org/10.1038/35066533
  33. F. J. Jedema et al., Nature 416, 713 (2002). https://doi.org/10.1038/416713a
  34. N. Tombros et al., Nature 448, 571 (2007). https://doi.org/10.1038/nature06037
  35. O. M. J. van't Erve et al., Appl. Phys. Lett. 91, 212109 (2007). https://doi.org/10.1063/1.2817747
  36. T. Suzuki et al., Appl. Phys. Express 4, 023003 (2011). https://doi.org/10.1143/APEX.4.023003
  37. C. H. Li et al., Nature Comm. 2, 245 (2011). https://doi.org/10.1038/ncomms1256
  38. S. P. Dash et al., ArXiv 1101.1691 (2011).
  39. H. Ohno et al., Nature 408, 944 (2000). https://doi.org/10.1038/35050040