DOI QR코드

DOI QR Code

Effect of Ti and C Contents on Prior Austenite Grain Size in Ti Added Steels

Ti 첨가강의 Ti와 C 함량에 따른 초기 오스테나이트 입도 변화

  • Kim, Woo-Jin (Department of Materials Science and Engineering, Pusan National University) ;
  • Kang, Nam-Hyun (Department of Materials Science and Engineering, Pusan National University) ;
  • Kim, Sung-Ju (Technical Research Laboratories, Hyundai steels) ;
  • Do, Hyung-Hyup (Technical Research Laboratories, Hyundai steels) ;
  • Nam, Dae-Geun (Korea Institute of Industrial Technology) ;
  • Cho, Kyung-Mox (Department of Materials Science and Engineering, Pusan National University)
  • Received : 2010.10.28
  • Accepted : 2011.03.01
  • Published : 2011.04.27

Abstract

Prior austenite grain size plays an important role in the production of high strength hot-rolled steel. This study investigated the effect of Ti and C contents on the precipitates and prior austenite grain size. Steel with no Ti solutes had prior austenite grain size of about 620 ${\mu}m$. The addition of Ti ~ 0.03 wt.% and 0.11 wt.% reduced the prior austenite grain size to 180 ${\mu}m$ and 120 ${\mu}m$, respectively. The amount of Ti required to significantly decrease the prior austenite grain size was in the range of 0.03 wt.%. However, the amount of carbon required to significantly decrease the prior austenite grain size was not present from 0.04 wt.% to 0.12 wt.%. Oxides of Ti ($Ti_2O_3$) were observed as the Ti content increased to 0.03 wt.%. The specimen containing 0.11 wt.% of Ti exhibited the complex carbides of (Ti, Nb) C. The formation of Ti precipitates was critical to reduce the prior austenite grain size. Furthermore, the consistency of prior austenite grain size increased as the carbon and Ti contents increased. During the reheating process of hot-rolled steel, the most critical factor for controlling the prior austenite grain size seems to be the presence of Ti precipitates.

Keywords

References

  1. J. G. Speer and S. S. Hansen, Metall. Mater. Trans., 20A, 25 (1989).
  2. J. T. Michalak and H. Hu, Metall. Mater. Trans., 10A, 975 (1979).
  3. R. D. K. Misra, G. C. Weatherly, J .E. Hartmann and A. J. Boucek, Mater. Sci. Tech., 17, 1119 (2001). https://doi.org/10.1179/026708301101511040
  4. R. D. K. Misra, S. W. Thompson, T. A. Hylton and A. J. Boucek, Metall. Mater. Trans., 32A, 745 (2001).
  5. R. D. K. Misra, K. K. Tenneti, G. C. Weatherly and G. Tither, Metall. Mater. Trans., 34A, 2341 (2003).
  6. S. G. Hong, H. J. Jun, K. B. Kang and C. G. Park, Scripta. Mater., 48, 1201 (2003). https://doi.org/10.1016/S1359-6462(02)00567-5
  7. H. -J. Kestenbach, J. A. Rodrigues and J. R. Dermonde, Mater. Sci. Tech., 5, 29 (1989). https://doi.org/10.1179/mst.1989.5.1.29
  8. J. R. Wilcox, R. W. K. Honeycombe, Mater. Sci. Tech., 3, 849 (1987). https://doi.org/10.1179/mst.1987.3.10.849
  9. Y.Jiang, Y. K. Park, O. Y. Lee, Kor. J. Mater. Res., 18, 65 (2008). https://doi.org/10.3740/MRSK.2008.18.2.065
  10. S. Maropoulos, S. Karagiannis and N. Ridley, Mater. Sci. Eng., 483, 735 (2008). https://doi.org/10.1016/j.msea.2006.11.172
  11. H. J. Jun, K. B. Kang and C. G. Park, Scripta Mater., 49, 1081 (2003). https://doi.org/10.1016/j.scriptamat.2003.08.013
  12. J. Reiter, G. Bernhard and H. Presslinger, Mater. Char., 59, 737 (2008). https://doi.org/10.1016/j.matchar.2007.06.003