DOI QR코드

DOI QR Code

Effect of RF Power on Structural and Electrical Properties of Ga-Doped ZnO for Transparent Electrode of Thin Film Solar Cells

박막 태양전지용 투명 전극을 위한 Ga 도핑된 ZnO의 RF 전력에 따른 구조 및 전기 특성 변화

  • Son, Chang-Sik (Department of Electric Materials Engineering, Silla University)
  • 손창식 (신라대학교 전자재료공학과)
  • Received : 2010.06.10
  • Accepted : 2011.01.15
  • Published : 2011.04.27

Abstract

We have investigated the structural and electrical properties of Ga-doped ZnO (GZO) thin films deposited by an RF magnetron sputtering at various RF powers from 50 to 90W. All the GZO thin films are grown as a hexagonal wurtzite phase with highly c-axis preferred parameters. The structural and electrical properties are strongly related to the RF power. The grain size increases as the RF power increases since the columnar growth of GZO thin film is enhanced at an elevated RF power. This result means that the crystallinity of GZO is improved as the RF power increases. The resistivity of GZO rapidly decreases as the RF power increases up to 70 W and saturates to 90W. In contrast, the electron concentration of GZO increases as the RF power increases up to 70 W and saturates to 90W. GZO thin film shows the lowest resistivity of $2.2{\times}10^{-4}{\Omega}cm$ and the highest electron concentration of $1.7{\times}10^{21}cm^{-3}$ at 90W. The mobility of GZO increases as the RF power increases since the grain boundary scattering decreases due to the reduced density of the grain boundary at a high RF power. The transmittance of GZO thin films in the visible range is above 90%. GZO is a feasible transparent electrode for application as a transparent electrode for thin film solar cells.

Keywords

References

  1. J. F. Wager, Science, 300, 1245 (2003). https://doi.org/10.1126/science.1085276
  2. E. Fortunato, L. Raniero, L. Silva, A. Gonçalves, A. Pimentel, P. Barquinha, H. Aguas, L. Pereira, G. Gonçalves, I. Ferreira, E. Elangovan and R. Martins, Sol. Energ. Mater. Sol. Cell., 92, 1605 (2008). https://doi.org/10.1016/j.solmat.2008.07.009
  3. H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao and D. C. Look, Appl. Phys. Lett., 77, 3761 (2000). https://doi.org/10.1063/1.1331089
  4. K. C. Lai, C. C. Liu, C. H. Lu, C. H. Yeh and M. P. Houng, Sol. Energ. Mater. Sol. Cell., 94, 397 (2010). https://doi.org/10.1016/j.solmat.2009.12.002
  5. V. Bhosle, J. T. Prater, F. Yang, D. Burk, S. R. Forrest and J. Narayan, J. Appl. Phys., 102, 023501 (2007). https://doi.org/10.1063/1.2750410
  6. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant and J. A. Voigt, Appl. Phys. Lett., 68, 403 (1996). https://doi.org/10.1063/1.116699
  7. Y. Matsumoto, G. Hirata, H. Takakura, H. Okamoto and Y. Hamakawa, J. Appl. Phys., 67, 6538 (1990). https://doi.org/10.1063/1.345131
  8. B. -G. Kim, J. -Y. Kim, B. -J. Oh, D. -G. Lim, J. -H. Park, D. -H. Woo and S. -Y. Kweon, Kor. J. Mater. Res., 20(4), 175 (2010) (in Korean). https://doi.org/10.3740/MRSK.2010.20.4.175
  9. S. W. Shin, K. U. Sim, J. H. Moon and J. H. Kim, Curr. Appl. Phys., 10, S274 (2010).
  10. J. P. Wiff, Y. Kinemuchi and K. Watari, Mater. Lett., 63, 2470 (2009). https://doi.org/10.1016/j.matlet.2009.08.036
  11. Q. B. Ma, Z. Z. Ye, H. P. He, J. R. Wang, L. P. Zhu and B. H. Zhao, Vacuum, 82, 9 (2007). https://doi.org/10.1016/j.vacuum.2006.12.010
  12. J. F. Chang and M. H. Hon, Thin Solid Films, 386, 79 (2001).
  13. J. Ma, F. Ji, D. H. Zhang, H. L. Ma and S. Y. Li, Thin Solid Films, 357, 98 (1999). https://doi.org/10.1016/S0040-6090(99)00357-0
  14. K. Y. Cheong, N. Muti and S. R. Ramanan, Thin Solid Films, 410, 142 (2002). https://doi.org/10.1016/S0040-6090(02)00286-9
  15. A. Martin, J. P. Espinos, A. Justo, J. P. Holgado, F. Yubero and A. R. Gonzalez-Elipe, Surf. Coating Tech., 151-152, 289 (2002). https://doi.org/10.1016/S0257-8972(01)01609-7
  16. X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, C. Cheng and H. Ma, J. Cryst. Growth, 274, 474 (2005). https://doi.org/10.1016/j.jcrysgro.2004.10.037
  17. B. -H. Choi, Kor. J. Mater. Res., 2(5), 360 (1992) (in Korean).
  18. J. S. Lee, G. C. Kim, H. H. Jeon, S. J. Hwangbo, D. H. Kim, C. M. Seong and M. H. Jeon, J. Kor. Vacuum Soc. 17(1), 23 (2008) (in Korean). https://doi.org/10.5757/JKVS.2008.17.1.023
  19. B. D. Cullity and S. R. Stock, Elements of Z-ray Diffraction, 2nd ed., p. 99, Addison-Wesley, Reading, MA, USA (1978).

Cited by

  1. Characteristics of ZnO Nanorod/ZnO/Si(100) Grown by Hydrothermal Method vol.22, pp.4, 2012, https://doi.org/10.3740/MRSK.2012.22.4.180