DOI QR코드

DOI QR Code

Electrical and Magnetic Properties in [La0.7(Ca1-xSrx)0.3MnO3)]0.99/(BaTiO3)0.01 Composites

  • Kim, Geun-Woo (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Bian, Jin-Long (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Seo, Yong-Jun (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Koo, Bon-Heun (School of Nano & Advanced Materials Engineering, Changwon National University)
  • Received : 2011.01.05
  • Accepted : 2011.03.16
  • Published : 2011.04.27

Abstract

Perovskite manganites such as $RE_{1-x}A_xMnO_3$ (RE = rare earth, A = Ca, Sr, Ba) have been the subject of intense research in the last few years, ever since the discovery that these systems demonstrate colossal magnetoresistance (CMR). The CMR is usually explained with the double-exchange (DE) mechanism, and CMR materials have potential applications for magnetic switching, recording devices, and more. However, the intrinsic CMR effect is usually found under the conditions of a magnetic field of several Teslas and a narrow temperature range near the Curie temperature ($T_c$). This magnetic field and temperature range make practical applications impossible. Recently, another type of MR, called the low-field magnetoresistance(LFMR), has also been a research focus. This MR is typically found in polycrystalline half-metallic ferromagnets, and is associated with the spin-dependent charge transport across grain boundaries. Composites with compositions $La_{0.7}(Ca_{1-x}Sr_x)_{0.3}MnO_3)]_{0.99}/(BaTiO_3)_{0.01}$ $[(LCSMO)_{0.99}/(BTO)_{0.01}]$were prepared with different Sr doping levels x by a standard ceramic technique, and their electrical transport and magnetoresistance (MR) properties were investigated. The structure and morphology of the composites were studied by X-ray diffraction (XRD) and scanning electronic microscopy (SEM). BTO peaks could not be found in the XRD pattern because the amount of BTO in the composites was too small. As the content of x decreased, the crystal structure changed from orthorhombic to rhombohedral. This change can be explained by the fact that the crystal structure of pure LCMO is orthorhombic and the crystal structure of pure LSMO is rhombohedral. The SEM results indicate that LCSMO and BTO coexist in the composites and BTO mostly segregates at the grain boundaries of LCSMO, which are in accordance with the results of the magnetic measurements. The resistivity of all the composites was measured in the range of 90-400K at 0T, 0.5T magnetic field. The result indicates that the MR of the composites increases systematically as the Ca concentration increases, although the transition temperature $T_c$ shifts to a lower range.

Keywords

References

  1. W. H. Jung, Kor. J. Mater. Res., 18, 26 (2008) (in Korean). https://doi.org/10.3740/MRSK.2008.18.1.026
  2. Y. P. Lee, J. S. Park, C. O. Kim and V. G. Prokhorov, J. Korean. Phys. Soc., 46(95), S1(2005).
  3. V. G. Prokhorov, V. A. Komashko, V. L. Svetchniko, K. K. Yu, S. Y. Park, J. S. Park, Y. P. Lee and J. -H. Kang, J. Korean. Phys. Soc., 48, 1417 (2006).
  4. D. Dai, X. Guangdchen and S. Wu, Progress in Physics(in China), 17, 201 (1997) (in Chinese).
  5. M. F. Hundley, J. J. Neumeier, R. H. Heffner, Q. X. Jia, X. D. Wu and J. D. Thompson, J. Appl. Phys., 79, 4535 (1996). https://doi.org/10.1063/1.361715
  6. H. Y. Hwang, S. W. Cheong, P. G. Radaelli, M. Marezio and B. Batlogg, Phys. Rev. Lett., 75, 914 (1995). https://doi.org/10.1103/PhysRevLett.75.914
  7. C. Zener, Phys. Rev., 82, 403(1951). https://doi.org/10.1103/PhysRev.82.403
  8. J. M. D. Coey, M. Viret and S. von Molnar, Adv. Phys., 48, 167 (1999). https://doi.org/10.1080/000187399243455
  9. H. Y. Hwang, S. W. Cheong, N. P. Ong and B. Batlogg, Phys. Rev. Lett., 77, 2041 (1996). https://doi.org/10.1103/PhysRevLett.77.2041
  10. LI. Balcells, A. E. Carrillo, B. Martinez and J. Fontcuberta, Appl. Phys. Lett., 74, 4014 (1999). https://doi.org/10.1063/1.123245
  11. D. K. Petrov, L. Krusin-Elbaum, J. Z. Sun, C. Feild and P. R. Duncombe, Appl. Phys. Lett., 75, 995 (1999). https://doi.org/10.1063/1.124577
  12. Z. C. Xia, S. L. Yuan, L. J. Zhang, G. H. Zhang, W. Feng, J. Tang, L. Liu, S. Liu, J. Liu, G. Peng, Z. Y. Li, Y. P. Yang, C. Q. Tang and C. S. Xiong, Solid State Comm., 125, 571 (2003). https://doi.org/10.1016/S0038-1098(02)00915-8
  13. D. Das, A. Saha, S. E. Russek, R. Raj and D. Bahadur, J. Appl. Phys., 93, 8301 (2003). https://doi.org/10.1063/1.1556260
  14. L. E. Hueso, J. Rivas, F. Rivadulla and M. A. Lopez-Quintela, J. Appl. Phys., 89, 1746 (2001). https://doi.org/10.1063/1.1338518
  15. P. K. Siwach, P. Srivastava, J. Singh, H. K. Singh and O. N. Srivastava, J. Alloy. Comp., 481, 17 (2009). https://doi.org/10.1016/j.jallcom.2009.03.012
  16. Y. H. Xiong, X. C. Bao, J. Zhang, C. L. Sun, W. H. Huang, X. S. Li, Q. J. Ji, X. W. Cheng, Z. H. Peng, N. Lin, Y. Zeng, Y. F. Cui and C. S. Xiong, Phys. B Condens. Matter, 398, 102 (2007). https://doi.org/10.1016/j.physb.2007.05.005
  17. K. X. Jin, C. L. Chen, S. L. Wang, S. G. Zhao, Y. C. Wang, Z. M. Song, Mater. Sci. Eng. B, 119, 206 (2005). https://doi.org/10.1016/j.mseb.2005.01.020
  18. A. Ray and T. K. Dey, Solid State Comm., 126, 147 (2003). https://doi.org/10.1016/S0038-1098(03)00002-4