DOI QR코드

DOI QR Code

Effects of lipopolysaccharide and CpG-DNA on burn-induced skin injury

  • Park, Byoung-Kwon (Department of Microbiology, College of Medicine, Hallym University) ;
  • Kim, Dong-Bum (Department of Microbiology, College of Medicine, Hallym University) ;
  • Cho, Sun-Hee (Department of Microbiology, College of Medicine, Hallym University) ;
  • Seo, Jae-Nam (Department of Pathology, College of Medicine, Hallym University) ;
  • Park, Jae-Bong (Department of Biochemistry, College of Medicine, Hallym University) ;
  • Kim, Yong-Sun (Department of Microbiology, College of Medicine, Hallym University) ;
  • Choi, Ihn-Geun (Department of Neuropsychiatry, Hallym University, Han-Gang Sacred Heart Hospital) ;
  • Kwon, Hyeok-Yil (Department of Physiology, College of Medicine, Hallym University) ;
  • Lee, Young-Hee (Department of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Kwon, Hyung-Joo (Department of Microbiology, College of Medicine, Hallym University)
  • Received : 2011.01.17
  • Accepted : 2011.02.09
  • Published : 2011.04.30

Abstract

Destruction of the skin barrier by thermal injury induces microbial invasion, which can lead to the development of systemic infection and septic shock. Microbial pathogens possess pathogen-associated molecular patterns (PAMPs), which are recognized by conserved receptors. To understand the role of PAMPs in thermal injury-induced mice, LPS or CpG-DNA were topically applied to dorsal skin after thermal injury. We observed an increase in the number of inflammatory cell infiltrates as well as thickening in the dermis upon treatment with LPS or CpG-DNA. We also found that expression of IL-$1{\beta}$, MIP-2, and RANTES induced by thermal injury was enhanced by LPS or CpG-DNA. In addition, the proportions of $CD4^+$ and $CD^8+$ T cells in the spleen and lymph nodes were altered by LPS or CpG-DNA. These results provide important information concerning PAMPs-induced inflammation upon thermal injury and provide a basis for studying the role of PAMPs in thermal injury-induced complications.

Keywords

References

  1. Teodorczyk-Injeyan, J. A., Sparkes, B. G., Mills, G. B., Peters, W. J. and Falk, R. E. (1986) Impairment of T cell activation in burn patients: a possible mechanism of thermal injury induced immunosuppression. Clin. Exp. Immunol. 65, 570-581.
  2. Moss, N. M., Gough, D. B., Jordan, A. L., Grbic, J. T., Wood, J. J., Rodrick, M. L. and Mannick, J. A. (1988) Temporal correlation of impaired immune response after thermal injury with susceptibility to infection in a murine model. Surgery 104, 882-887.
  3. Harris, B. H. and Gelfand, J. A. (1995) The immune response to trauma. Semin. Pediatr. Surg. 4, 77-82.
  4. O’Sullivan, S. T. and O’Connor, T. P. (1997) Immunosuppression following thermal injury: the pathogenesis of immunodysfunction. Br. J. Plast. Surg. 50, 615-623. https://doi.org/10.1016/S0007-1226(97)90507-5
  5. Schwacha, M. G. (2003) Macrophages and post-burn immune dysfunction. Burns 29, 1-14. https://doi.org/10.1016/S0305-4179(02)00187-0
  6. Faunce, D. E., Gregory, M. S. and Kovacs, E. J. (1997) The effects of acute ethanol exposure on cellular immunity in a murine model of thermal injury. J. Leukoc. Biol. 62, 733-740. https://doi.org/10.1002/jlb.62.6.733
  7. O’Riordain, M. G., Collins, K. H., Pilz, M., Saporoschetz, I. B., Mannick, J. A. and Rodrick, M. L. (1992) Modulation of macrophage hyperactivity improves survival in a burn-sepsis model. Arch. Surg. 127, 152-158. https://doi.org/10.1001/archsurg.1992.01420020034005
  8. Gibran, N. S., Ferguson, M., Heimbach, D. M. and Isik, F. F. (1997) Monocyte chemoattractant protein-1 mRNA expression in the human burn wound. J. Surg. Res. 70, 1-6. https://doi.org/10.1006/jsre.1997.5017
  9. Schwacha, M. G. and Somers, S. D. (1998) Thermal injury induced immunosuppression in mice: the role of macrophage derived reactive nitrogen intermediates. J. Leukoc. Biol. 63, 51-58. https://doi.org/10.1002/jlb.63.1.51
  10. Armstrong, D. A., Major, J. A., Chudyk, A. and Hamilton, T. A. (2004) Neutrophil chemoattractant genes KC and MIP-2 are expressed in different cell populations at sites of surgical injury. J. Leukoc. Biol. 75, 641-648. https://doi.org/10.1189/jlb.0803370
  11. Sayeed, M. M. (1996) Alterations in cell signaling and related effector functions in T lymphocytes in burn/trauma/septic injuries. Shock 5, 157-166. https://doi.org/10.1097/00024382-199603000-00001
  12. O’Sullivan, S. T., Lederer, J. A., Horgan, A. F., Chin, D. H., Mannick, J. A. and Rodrick, M. L. (1995) Major injury leads to predominance of the T helper-2 lymphocyte phenotype and diminished interleukin-12 production associated with decreased resistance to infection. Ann. Surg. 222, 482-492. https://doi.org/10.1097/00000658-199522240-00006
  13. Dipietro, L. A., Reintjes, M. G., Low, Q. E., Levi, B. and Gamelli, R. L. (2001) Modulation of macrophage recruitment into wounds by monocyte chemoattractant protein- 1. Wound Repair Regen. 9, 28-33. https://doi.org/10.1046/j.1524-475x.2001.00028.x
  14. Faunce, D. E., Llanas, J. N. Patel, P. J., Gregory, M. S., Duffner, L. A. and Kovacs, E. J. (1999) Neutrophil chemokine production in the skin following scald injury. Burns 25, 403-410. https://doi.org/10.1016/S0305-4179(99)00014-5
  15. Shallo, H., Plackett, T. P., Heinrich, S. A. and Kovacs, E. J. (2003) Monocyte chemoattractant protein-1 (MCP-1) and macrophage infiltration into the skin after burn injury in aged mice. Burns 29, 641-647. https://doi.org/10.1016/S0305-4179(03)00070-6
  16. Drost, A. C., Burleson, D. G., Cioffi, W. G. Jr., Mason, A. D. Jr. and Pruitt, B. A. Jr. (1993) Plasma cytokines after thermal injury and their relationship to infection. Ann. Surg. 218, 74-78. https://doi.org/10.1097/00000658-199307000-00012
  17. Meakins, J. L. (1990) Etiology of multiple organ failure. J. Trauma 30, S165-S168. https://doi.org/10.1097/00005373-199012001-00033
  18. Baue, A. E., Durham, R. and Faist, E. (1998) Systemic inflammatory response syndrome (SIRS), multiple organ dysfunction syndrome (MODS), multiple organ failure (MOF): are we winning the battle? Shock 10, 79-89. https://doi.org/10.1097/00024382-199808000-00001
  19. Huh, W. K., Oono, T., Shirafuji, Y., Akiyama, H., Arata, J., Sakaguchi, M., Huh, N. H. and Iwatsuki, K. (2002) Dynamic alteration of human beta-defensin 2 localization from cytoplasm to intercellular space in psoriatic skin. J. Mol. Med. 80, 678-684. https://doi.org/10.1007/s00109-002-0373-z
  20. Lehrer, R. I., Lichtenstein, A. K. and Ganz, T. (1993) Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu. Rev. Immunol. 11, 105-128. https://doi.org/10.1146/annurev.iy.11.040193.000541
  21. Ganz, T. (2003) Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3, 710-720. https://doi.org/10.1038/nri1180
  22. Harder, J., Bartels, J., Christophers, E. and Schroder, J. M. (2001) Isolation and characterization of human betadefensin- 3, a novel human inducible peptide antibiotic. J. Biol. Chem. 276, 5707-5713. https://doi.org/10.1074/jbc.M008557200
  23. Harder, J., Bartels, J., Christophers, E. and Schroder, J. M. (1997) A peptide antibiotic from human skin. Nature 387, 861. https://doi.org/10.1038/43088
  24. Valore, E. V., Park, C. H., Quayle, A. J., Wiles, K. R., McCray, P. B. Jr. and Ganz, T. (1998) Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J. Clin. Invest. 101, 1633-1642. https://doi.org/10.1172/JCI1861
  25. Schroder, J. M. (1999) Epithelial peptide antibiotics. Biochem. Pharmacol. 57, 121-134. https://doi.org/10.1016/S0006-2952(98)00226-3
  26. Schmid, P., Grenet, O., Medina, J., Chibout, S. D., Osborne, C. and Cox, D. A. (2001) An intrinsic antibiotic mechanism in wounds and tissue-engineered skin. J. Invest. Dermatol. 116, 471-472. https://doi.org/10.1046/j.1523-1747.2001.01279.x
  27. Butmarc, J., Yufit, T., Carson, P. and Falanga, V. (2004) Human $\beta$-defensin-2 expression is increased in chronic wounds. Wound Repair Regen. 12, 439-443. https://doi.org/10.1111/j.1067-1927.2004.12405.x
  28. Singh, P. K., Jia, H. P., Wiles, K., Hesselberth, J., Liu, L., Conway, B. A., Greenberg E. P., Valore, E. V., Welsh, M. J., Ganz, T., Tack, B. F. and McCray, P. B. Jr. (1998) Production of beta-defensins by human airway epithelia. Proc. Natl. Acad. Sci. U.S.A. 95, 14961-14966. https://doi.org/10.1073/pnas.95.25.14961
  29. Hiratsuka, T., Nakazato, M., Date, Y., Ashitani, J., Minematsu, T., Chino, N. and Matsukura, S. (1998) Identification of human beta-defensin-2 in respiratory tract and plasma and its increase in bacterial pneumonia. Biochem. Biophys. Res. Commun. 249, 943-947. https://doi.org/10.1006/bbrc.1998.9239
  30. Ashitani, J., Mukae, H., Hiratsuka, T., Nakazato, M., Kumamoto, K. and Matsukura, S. (2001) Plasma and BAL fluid concentrations of antimicrobial peptides in patients with Mycobacterium avium-intracellulare infection. Chest 119, 1131-1137. https://doi.org/10.1378/chest.119.4.1131
  31. Aderem, A. and Ulevitch, R. J. (2000) Toll-like receptors in the induction of the innate immune response. Nature 406, 782-787. https://doi.org/10.1038/35021228
  32. Anderson, K. V. (2000) Toll signaling pathways in the innate immune response. Curr. Opin. Immunol. 12, 13-19. https://doi.org/10.1016/S0952-7915(99)00045-X
  33. Akira, S., Uematsu, S. and Takeuchi, O. (2006) Pathogen recognition and innate immunity. Cell 124, 783-801. https://doi.org/10.1016/j.cell.2006.02.015
  34. Deng, G. M., Nilsson, I. M., Verdrengh, M., Collins, L. V. and Tarkowski, A. (1999) Intra-articularly localized bacterial DNA containing CpG motifs induces arthritis. Nat. Med. 5, 702-705. https://doi.org/10.1038/9554
  35. Sparwasser, T., Hultner, L., Koch, E. S., Luz, A., Lipford, G. B. and Wagner, H. (1999) Immunostimulatory CpG-oligodeoxynucleotides cause extramedullary murine hemopoiesis. J. Immunol. 162, 2368-2374.
  36. Heikenwalder, M., Polymenidou, M., Junt, T., Sigurdson, C., Wagner, H., Akira, S., Zinkernagel, R. and Aguzzi, A. (2004) Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nat. Med. 10, 187-192. https://doi.org/10.1038/nm987
  37. Kim, D., Rhee, J. W., Kwon, S., Sohn, W. J., Lee, Y., Kim, D. W., Kim, D. S. and Kwon, H. J. (2009) Immunostimulation and anti-DNA antibody production by backbone modified CpG-DNA. Biochem. Biophys. Res. Commun. 379, 362-367. https://doi.org/10.1016/j.bbrc.2008.12.063
  38. Park, B. K., Lee, S., Seo, J. N., Rhee, J. W., Park, J. B., Kim, Y. S., Choi, I. G., Kim, Y. E., Lee, Y. and Kwon, H. J. (2010) Protection of burn-induced skin injuries by the flavonoid kaempferol. BMB Rep. 43, 46-51. https://doi.org/10.5483/BMBRep.2010.43.1.046
  39. Kim, D. S., Han, J. H. and Kwon, H. J. (2003) NF-${\kappa}B$ and c-Jun-dependent regulation of macrophage inflammatory protein-2 gene expression in response to lipopolysaccharide in RAW 264.7 cells. Mol. Immunol. 40, 633-643. https://doi.org/10.1016/j.molimm.2003.07.001
  40. Kwon, H. J. and Kim, D. S. (2003) Regulation of macrophage inflammatory protein-2 gene expression in response to oligodeoxynucleotide containing CpG motifs in RAW 264.7 cells. Biochem. Biophys. Res. Commun. 308, 608-613.
  41. Lee, K. W., Kim, D.S. and Kwon, H. J. (2004) CG sequence-and phosphorothioate backbone modificationdependent activation of the NF-${\kappa}B$-responsive gene expression by CpG-oligodeoxynucleotides in human RPMI 8226 B cells. Mol. Immunol. 41, 955-964. https://doi.org/10.1016/j.molimm.2004.06.022
  42. Lee, K. W., Jung, J., Lee, Y., Kim, T. Y., Choi, S. Y., Park, J., Kim, D. S. and Kwon, H. J. (2006) Immunostimulatory oligodeoxynucleotide isolated from genome wide screening of Mycobacterium bovis chromosomal DNA. Mol. Immunol. 43, 2107-2118. https://doi.org/10.1016/j.molimm.2005.12.004
  43. Walker, H. L. and Mason, A. D. Jr. (1968) A standard animal burn. J. Trauma 8, 1049-1051. https://doi.org/10.1097/00005373-196811000-00006

Cited by

  1. Effects of systemic pretreatment with CpG oligodeoxynucleotides on skin wound healing in mice vol.21, pp.5, 2013, https://doi.org/10.1111/wrr.12084
  2. Oestrogen promotes healing in a bacterial LPS model of delayed cutaneous wound repair vol.96, pp.4, 2016, https://doi.org/10.1038/labinvest.2015.160
  3. The role of hydrogen sulfide in burns vol.42, pp.3, 2016, https://doi.org/10.1016/j.burns.2015.07.005