DOI QR코드

DOI QR Code

A potential role for fatty acid biosynthesis genes during molting and cuticle formation in Caenorhabditis elegans

  • Li, Yingxiu (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University) ;
  • Paik, Young-Ki (Department of Biomedical Science, World Class University Graduate School Program, and Yonsei Proteome Research Center, Yonsei University)
  • Received : 2010.10.11
  • Accepted : 2011.03.10
  • Published : 2011.04.30

Abstract

Caenorhabditis elegans undergoes a developmental molting process that involves a coordinated interplay among diverse intracellular pathways. Here, we investigated the functions of two fatty acid biosynthesis genes; pod-2, encoding acetyl-CoA carboxylase, and fasn-1, encoding fatty acid synthase, in the C. elegans molting process. Although both the pod-2 and fasn-1 genes were expressed at constant levels throughout C. elegans development, knockdown of the proteins encoded by these genes using RNA interference produced severe defects in triglyceride production, molting, and reproduction that were coupled to suppression of NAS-37, a metalloprotease. An assessment of the structure and integrity of the cuticle using a COL-19::GFP marker and Hoechst 33258 staining showed that downregulation of either pod-2 or fasn-1 impaired cuticle formation and disrupted the integrity of the cuticle and the hypodermal membrane.

Keywords

References

  1. Page, A. P. and Johnstone, I. L. (2007) The cuticle. WormBook 19, 1-15.
  2. Brooks, D. R., Appleford, P. J., Murray, L. and Isaac, R. E. (2003) An essential role in molting and morphogenesis of Caenorhabditis elegans for ACN-1, a novel member of the angiotensin-converting enzyme family that lacks a metallopeptidase active site. J. Biol. Chem. 278, 52340-52346. https://doi.org/10.1074/jbc.M308858200
  3. Hashmi, S., Zhang, J., Oksov, Y. and Lustigman, S. (2004) The Caenorhabditis elegans cathepsin Z-like cysteine protease, Ce-CPZ-1, has a multifunctional role during the worms' development. J. Biol. Chem. 279, 6035-6045. https://doi.org/10.1074/jbc.M312346200
  4. Davis, M. W., Birnie, A. J., Chan, A. C., Page, A. P. and Jorgensen, E. M. (2004) A conserved metalloprotease mediates ecdysis in Caenorhabditis elegans. Development 131, 6001-6008. https://doi.org/10.1242/dev.01454
  5. Yochem, J., Tuck, S., Greenwald, I. and Han, M. (1999) A gp330/megalin-related protein is required in the major epidermis of Caenorhabditis elegans for completion of molting. Development 126, 597-606.
  6. Kostrouchova, M., Krause, M., Kostrouch, Z. and Rall, J. E. (1998) CHR3: a Caenorhabditis elegans orphan nuclear hormone receptor required for proper epidermal development and molting. Development 125, 1617-1626.
  7. Kostrouchova, M., Krause, M., Kostrouch, Z. and Rall, J. E. (2001) Nuclear hormone receptor CHR3 is a critical regulator of all four larval molts of the nematode Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 98, 7360-7365. https://doi.org/10.1073/pnas.131171898
  8. Magner, D. B. and Antebi, A. (2008) Caenorhabditis elegans nuclear receptors: insights into life traits. Trends. Endocrinol. Metab. 19, 153-160. https://doi.org/10.1016/j.tem.2008.02.005
  9. Roberts, B., Clucas, C. and Johnstone, I. L. (2003) Loss of SEC-23 in Caenorhabditis elegans causes defects in oogenesis, morphogenesis, and extracellular matrix secretion. Mol. Biol. Cell 14, 4414-4426. https://doi.org/10.1091/mbc.E03-03-0162
  10. Winter, A. D., McCormack, G. and Page, A. P. (2007) Protein disulfide isomerase activity is essential for viability and extracellular matrix formation in the nematode Caenorhabditis elegans. Dev. Biol. 15, 449-461.
  11. Roudier, N., Lefebvre, C. and Legouis, R. (2005) CeVPS-27 is an endosomal protein required for the molting and the endocytic trafficking of the low-density lipoprotein receptor-related protein 1 in Caenorhabditis elegans. Traffic 6, 695-705. https://doi.org/10.1111/j.1600-0854.2005.00309.x
  12. Frand, A. R., Russel, S. and Ruvkun, G. (2005) Functional genomic analysis of C. elegans molting. PLoS Biol. 3, e312. https://doi.org/10.1371/journal.pbio.0030312
  13. Thein, M. C., Winter, A. D., Stepek, G., McCormack, G., Stapleton, G., Johnstone, I. L. and Page, A. P. (2009) The combined extracellular matrix cross-linking activity of the peroxidase MLT-7 and the duox BLI-3 are critical for post-embryonic viability in Caenorhabditis elegans. J. Biol. Chem. 284, 17549-17563. https://doi.org/10.1074/jbc.M900831200
  14. Fritz, J. A. and Behm, C. A. (2009) CUTI-1: A novel tetraspan protein involved in C. elegans cuticle formation and epithelial integrity. PLoS One 4, e5117. https://doi.org/10.1371/journal.pone.0005117
  15. Johnstone, I. L. (2000) Cuticle collagen genes expression in Caenorhabditis elegans. Trends. Genet. 16, 21-27.
  16. Blaxter, M. L. (1993) Cuticle surface proteins of wild type and mutant Caenorhabditis\elegans. J. Biol. Chem. 268, 6600-6609.
  17. Rappleye, C. A., Tagawa, A., Le, Bot. N., Ahringer, J. and Aroian, R. V. (2003) Involvement of fatty acid pathways and cortical interaction of the pronuclear complex in Caenorhabditis elegans embryonic polarity. BMC. Dev. Biol. 3, 8. https://doi.org/10.1186/1471-213X-3-8
  18. Entchev, E. V., Schwudke, D., Zagoriy, V., Matyash, V., Bogdanova, A., Habermann, B., Zhu, L., Shevchenko, A. and Kurzchalia, T. V. (2008) LET-767 is required for the production of branched chain and long chain fatty acids in Caenorhabditis elegans. J. Biol. Chem. 283, 17550-17560. https://doi.org/10.1074/jbc.M800965200
  19. Kuervers, L. M., Jones, C. L., O'Neil, N. J. and Baillie, D. L. (2003) The sterol modifying enzyme LET-767 is essential for growth, reproduction and development in Caenorhabditis elegans. Mol. Genet. Genomics 270, 121-131. https://doi.org/10.1007/s00438-003-0900-9
  20. Craig, H., Isaac, R. E. and Brooks, D. R. (2007) Unravelling the moulting degradome: new opportunities for chemotherapy? Trends Parasitol. 23, 248-253. https://doi.org/10.1016/j.pt.2007.04.003
  21. Tagawa, A., Rappleye, C. A. and Aroian, R. V. (2001) pod-2, along with pod-1, defines a new class of genes required for polarity in the early Caenorhabditis elegans embryo. Dev. Biol. 233, 412-424. https://doi.org/10.1006/dbio.2001.0234
  22. Wood, W. B. (1988) The Nematode Caenorhabditis elegans. pp. 82-89, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, U.S.A.
  23. Simons, K. and Ikonen, E. (1997) Functional rafts in cell membranes. Nature 387, 569-572. https://doi.org/10.1038/42408
  24. Kurzchalia, T. V. and Ward, S. (2003) Why do worms need cholesterol? Nat. Cell Biol. 5, 684-688. https://doi.org/10.1038/ncb0803-684
  25. Kage-Nakadai, E., Kobuna, H., Kimura, M., Gengyo-Ando, K., Inoue, T., Arai, H. and Mitani, S. (2010) Two very long chain fatty acid acyl-CoA synthetase genes, acs-20 and acs-22, have roles in the cuticle surface barrier in Caenorhabditis elegans. PLoS. One 5, e8857. https://doi.org/10.1371/journal.pone.0008857
  26. Watts, J. L. (2009) Fat synthesis and adiposity regulation in Caenorhabditis elegans. Trends Endocrinol. Metab. 20, 58-65. https://doi.org/10.1016/j.tem.2008.11.002
  27. McKay, S. J., Johnsen, R., Khattra, J., Asano, J., Baillie, D. L., Chan, S., Dube, N., Fang, L., Goszczynski, B., Ha, E., Halfnight, E., Hollebakken, R., Huang, P., Hung, K., Jensen, V., Jones, S. J., Kai, H., Li, D., Mah, A., Marra, M., McGhee, J., Newbury, R., Pouzyrev, A., Riddle, D. L., Sonnhammer, E., Tian, H., Tu, D., Tyson, J. R., Vatcher, G., Warner, A., Wong, K., Zhao, Z. and Moerman, D. G. (2003) Gene expression profiling of cells, tissues, and developmental stages of the nematode C. elegans. Cold Spring Harb. Symp. Quant. Biol. 68, 159-169. https://doi.org/10.1101/sqb.2003.68.159
  28. Timmons, L. and Fire, A. (1998) Specific Interference by ingested dsRNA. Nature 395, 854. https://doi.org/10.1038/27579
  29. Moribe, H., Yochem, J., Yamada, H., Tabuse, Y., Fujimoto, T. and Mekada, E. (2004) Tetraspanin protein (TSP-15) is required for epidermal integrity in Caenorhabditis elegans. J. Cell Sci. 117, 5209-5220. https://doi.org/10.1242/jcs.01403

Cited by

  1. Novel mutations and expression changes of acetyl-coenzyme A carboxylase are associated with spirotetramat resistance in Aphis gossypii Glover vol.26, pp.4, 2017, https://doi.org/10.1111/imb.12300
  2. Defects in the C. elegans acyl-CoA Synthase, acs-3, and Nuclear Hormone Receptor, nhr-25, Cause Sensitivity to Distinct, but Overlapping Stresses vol.9, pp.3, 2014, https://doi.org/10.1371/journal.pone.0092552
  3. Alteration in cellular acetylcholine influences dauer formation in Caenorhabditis elegans vol.47, pp.2, 2014, https://doi.org/10.5483/BMBRep.2014.47.2.100
  4. Spirotetramat resistance adaption analysis of Aphis gossypii Glover by transcriptomic survey vol.124, 2015, https://doi.org/10.1016/j.pestbp.2015.04.007
  5. Mutation of the lbp-5 gene alters metabolic output in Caenorhabditis elegans vol.47, pp.1, 2014, https://doi.org/10.5483/BMBRep.2014.47.1.086
  6. Identification of ecdysteroid receptor-mediated signaling pathways in the hepatopancreas of the red swamp crayfish, Procambarus clarkii vol.246, 2017, https://doi.org/10.1016/j.ygcen.2017.01.013
  7. Ultraviolet-A triggers photoaging in model nematode Caenorhabditis elegans in a DAF-16 dependent pathway vol.38, pp.1, 2016, https://doi.org/10.1007/s11357-016-9889-y
  8. Inactivation of Conserved C. elegans Genes Engages Pathogen- and Xenobiotic-Associated Defenses vol.149, pp.2, 2012, https://doi.org/10.1016/j.cell.2012.02.050
  9. An enhanced C. elegans based platform for toxicity assessment vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-10454-3
  10. C. elegans NIMA-related kinases NEKL-2 and NEKL-3 are required for the completion of molting vol.398, pp.2, 2015, https://doi.org/10.1016/j.ydbio.2014.12.008
  11. Differential expression of αB-crystallin causes maturation-dependent susceptibility of oligodendrocytes to oxidative stress vol.46, pp.10, 2013, https://doi.org/10.5483/BMBRep.2013.46.10.015
  12. Regulation of Body Fat inCaenorhabditis elegans vol.77, pp.1, 2015, https://doi.org/10.1146/annurev-physiol-021014-071704
  13. vol.205, pp.1, 2016, https://doi.org/10.1534/genetics.116.194464
  14. IDH-1 deficiency induces growth defects and metabolic alterations in GSPD-1-deficient Caenorhabditis elegans vol.97, pp.3, 2019, https://doi.org/10.1007/s00109-018-01740-2