DOI QR코드

DOI QR Code

Isolation and Identification of Antioxidant Polyphenolic Compounds in Mulberry (Morus alba L.) Seeds

오디씨로부터 항산화성 폴리페놀화합물의 분리 및 동정

  • Lee, Yu-Jin (Dept. of Food Science and Nutrition, Catholic University of Daegu) ;
  • Kim, Eun-Ok (Dept. of Food Science and Nutrition, Catholic University of Daegu) ;
  • Choi, Sang-Won (Dept. of Food Science and Nutrition, Catholic University of Daegu)
  • 이유진 (대구가톨릭대학교 식품영양학과) ;
  • 김은옥 (대구가톨릭대학교 식품영양학과) ;
  • 최상원 (대구가톨릭대학교 식품영양학과)
  • Received : 2011.02.07
  • Accepted : 2011.03.18
  • Published : 2011.04.30

Abstract

Eleven polyphenolic compounds, including procatechuic and chlorogenic acids, (+)-dihydroquercetin, rutin, isoquercitrin, quercitrin, (+)-dihydrokaempferol, trans-resveratrol, moracin, quercetin and 4-prenylmoracin were isolated and purified from the methanolic extract of defatted mulberry seed residue by a series of column chromatography including silica gel, Sephadex LH-20, and ODS-A, and their chemical structures were identified by spectral analysis. The antioxidant activities of the eleven isolated polyphenolic compounds were measured spectrophotometrically using DPPH radical. Among the eleven polyphenolic compounds tested, rutin ($IC_{50}=20.2\;{\mu}M$), isoquercitrin ($IC_{50}=22.5\;{\mu}M$), quercitrin ($IC_{50}=24.6\;{\mu}M$), quercetin ($IC_{50}=27.8\;{\mu}M$), (+)-dihydroquercetin ($IC_{50}=28.9\;{\mu}M$), and chlorogenic acid ($IC_{50}=30.6\;{\mu}M$) exhibited stronger antioxidant activity than L-ascorbic acid ($IC_{50}=31.5\;{\mu}M$) and ${\alpha}$-tocopherol ($IC_{50}=52.3\;{\mu}M$), whereas procatechuic acid ($IC_{50}=68.2\;{\mu}M$) showed lower activity. In addition, (+)-dihydrokaempferol ($IC_{50}=33.8\;{\mu}M$), trans-resveratrol ($IC_{50}=36.2\;{\mu}M$), moracin ($IC_{50}=47.6\;{\mu}M$), and 4-prenylmoracin ($IC_{50}=48.2\;{\mu}M$) exhibited moderate antioxidant activity. Furthermore, levels of the eleven polyphenolic compounds from three different types of mulberry seeds were quantified by HPLC, and their contents were as follows: rutin (311~60.0 mg/100 g)> quercitrin (7.2~34.2 mg/100 g)> (+)-dihydroquercetin (13.2~33.1 mg/100 g)> quercetin (15.8~19.5 mg/100 g)> 4-prenylmoracin (10.5~43.3 mg/100 g)> isoquercitrin (5.8~15.4 mg/100 g)> chlorogenic acid (0.0~15.3 mg/100 g)> moracin (4.7~7.2 mg/100 g)> procatechuic acid (0.0~11.6 mg/100 g)> (+)-dihydrokaempferol and trans-resveratrol (<0.1 mg/100 g). The 'Daesungppong' mulberry seeds among the three cultivars had higher flavonoid contents, such as rutin and quercetin derivatives, while the 'Iksuppong' seeds had the highest contents of phenolic acids and moracin derivatives. 'Cheongilppong' had lower amounts of polyphenolic compounds than the other two mulberry seeds. These results indicate that mulberry seeds containing antioxidant polyphenolic compounds may be potentially useful sources of anti-diabetic, anti-hypertensive, and anti-aging agents for functional foods and cosmetics.

뽕나무(Morus alba L.) 열매 오디로부터 오디주스 및 오디와인 제조 중 부산물로 얻어지는 오디씨를 기능성식품 및 화장품의 신소재로 사용하기 위한 연구의 일환으로 먼저 오디씨로부터 11가지 폴리페놀화합물을 분리 및 동정하였으며, 아울러 그들의 항산화활성과 품종별 함량을 측정하였다. 먼저 탈지오디씨박의 메탄올추출물을 노르말-헥산으로 탈지한 후 디클로로메탄, 에틸아세테이트 및 노르말-부탄올로 용매분획하고, 이중 항산화활성이 강한 에틸아세테이트 분획물을 silica-gel, Sephadex LH-20 및 ODS-A column chromatography를 순차적으로 실시하여 11가지 폴리페놀 화합물을 각각 순수하게 분리 및 정제하였으며, 그들의 화학 구조를 NMR을 이용하여 동정하였다. 오디씨로부터 분리한 11가지 폴리페놀화합물의 항산화활성을 DPPH radical을 이용하여 측정한 결과, rutin($IC_{50}=20.2\;{\mu}M$)이 가장 강한 항산화활성을 나타내었으며, 그 다음으로 isoquercitrin ($IC_{50}=22.5\;{\mu}M$)> quercitrin($IC_{50}=24.6\;{\mu}M$)> quercetin($IC_{50}=27.8\;{\mu}M$)> (+)-dihydroquercetin($IC_{50}=28.9\;{\mu}M$)> chlorogenic acid($IC_{50}=30.6\;{\mu}M$) 순으로 나타내었다. 반면, (+)-dihydrokaempferol($IC_{50}=33.8\;{\mu}M$), trans-resveratrol($IC_{50}=36.2\;{\mu}M$), moracin($IC_{50}=47.6\;{\mu}M$) 및 4-prenylmoracin($IC_{50}=48.2\;{\mu}M$)은 위의 폴리페놀화합물보다 낮은 항산화활성을 나타내었으며, procatechuic acid($IC_{50}=68.2\;{\mu}M$)는 가장 낮은 항산화활성을 나타내었다. 한편, 3가지 뽕나무 품종별 오디씨의 11가지 폴리페놀화합물의 함량을 측정한 결과, rutin이 31.1~60.0 mg/100 g으로 가장 높았으며, 그 다음으로 quercitrin(7.2~34.2 mg/100 g)> dihydroquercetin(13.2~33.1 mg/100 g)> quercetin(15.8~19.5 mg/100 g)> 4-prenylmor acin(10.5~43.3 mg/100 g)> isoquercitrin(5.8~15.4 mg/100g)> chlorogenic acid(0.0~15.3 mg/100 g)> moracin(4.7~7.2 mg/100 g)> procatechuic acid(0.0~11.6 mg/100 g) 순으로 낮게 나타났으며, (+)-dihydrokaempferol 및 transresveratrol의 함량은 미량(< 0.1 mg/100 g)으로 나타났다. 또한, 3가지 품종 중 대성뽕 오디씨는 폴리페놀화합물 중 rutin 및 quercetin 유도체의 함량이 높았으며, 반면 익수뽕 오디씨는 procatechuic 및 chlorogenic acid의 함량이 높았고, 특히 moracin 및 4-prenylmoracin의 함량이 다른 오디품종에 비해 높았으나, 반면 청일뽕은 3가지 품종 중 폴리페놀화합물의 함량이 가장 낮았다. 따라서 오디씨는 항산화성 폴리페놀화합물을 많이 함유하고 있기 때문에 암, 고혈압, 당뇨 및 노화를 예방하는 기능성식품 및 화장품의 신소재로 널리 활용할 수 있을 것으로 예상된다.

Keywords

References

  1. Emerit J, Lippman J. 1990. Free radicals and lipid peroxidation in cell pathology. In Handbook of Free Radicals and Antioxidants in Biomedicine. Miquel J, Quintanilha AT, Weber H, eds. CRC Press, Boca Raton, FL, USA. p 177-185.
  2. Branen AL. 1975. Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J Am Oil Chem Soc 52: 59-64. https://doi.org/10.1007/BF02901825
  3. Ito N, Fukushima S, Tsuda H. 1985. Carcinogenicity and modification of the carcinogenicity response by BHA and BHT, and other antioxidants. Crit Rev Toxicol 15: 109-150. https://doi.org/10.3109/10408448509029322
  4. Naczk M, Shahidi F. 2003. Phenolic compounds in plant foods: Chemistry and health benefits. Nutraceuticals & Food 8: 200-218. https://doi.org/10.3746/jfn.2003.8.2.200
  5. Wallace G, Fry S. 1994. Phenolic components of the plant cell wall, Internat Rev Cytol 113: 1223-1231.
  6. D'Archivio M, Filesi C, Di Benedetto R, Gargiulo R, Giovannini C, Masella R. 2007. Polyphenols, dietary sources and bioavailability. Ann Ist Super Sanita 43: 348-361.
  7. Nakatani N. 1990. Recent advances in the study on natural antioxidants. Nippon Shokuhin Kogyo Gakkaishi 37: 569-576. https://doi.org/10.3136/nskkk1962.37.7_569
  8. Nozaki K. 1986. Current aspect and future condition of phytogenic antioxidants. Fragrance J 6: 99-106.
  9. Kim SK. 1991. Beneficial medicine, mulberry fruit. In Bonchohak. Younglimsa, Seoul, Korea. Chapter 17, p 598.
  10. Kangjoshineuihakwon. 1985. Jungyakdaesajon. 2nd ed. Sohakkwyan, Sanghai, China. p 3717.
  11. Kim HB, Bang HS, Lee HW, Seuk YS, Sung GB. 1999. Chemical characteristics of mulberry syncarp. Korean J Seri Sci 41: 123-128.
  12. Park SW, Jung YS, Ko KC. 1997. Quantitative analysis of anthocyanins among mulberry cultivars and their pharmacological screening. J Korean Soc Hort Sci 38: 722-724.
  13. Kim TY, Kwon YB. 1996. A study on the antidiabetic effect of mulberry fruits. Korean J Seri Sci 38: 100-107.
  14. Kim SY, Park KJ, Lee WC. 1998. Antiinflammatory and antioxidative effects of Morus spp. fruit extract. Korean J Med Crop Sci 6: 204-209.
  15. Cho HS, Ahn MS. 1999. Antioxidative effect of phenilic aicd in defatted perilla flour in soybean oil. Korean J Soc Food Sci 15: 55-60.
  16. Kim EO, Lee KT, Choi SW. 2008. Chemical comparison of germinated- and ungerminated-safflower (Carthamus tinctorius) seeds. J Korean Soc Food Sci Nutr 37: 1162-1167. https://doi.org/10.3746/jkfn.2008.37.9.1162
  17. Jang YS, Jeong JM. 2010. Antioxidative effect and digestive enzyme inhibition of grape seed extract (GSE). J Korean Soc Food Sci Nutr 39: 783-788. https://doi.org/10.3746/jkfn.2010.39.6.783
  18. Kim EO, Yu MH, Lee YJ, Leem HH, Kim SA, Kang DH, Choi SW. 2010. Comparison of functional constituents and biological activity of the seed extracts from two mulberry fruits. J Food Sci Nutr 15: 98-104. https://doi.org/10.3746/jfn.2010.15.2.098
  19. Tagashira M, Ohtake Y. 1998. A new antioxidative 1,3-benzodioxole from Melisa officinalis. Planta Med 64: 555-558. https://doi.org/10.1055/s-2006-957513
  20. Kwon YJ, Rhee SJ, Chu JW, Choi SW. 2005. Comparison of radical scavenging activity of extracts of mulberry juice and cake prepared from mulberry (Morus spp.) fruit. J Food Sci Nutr 10: 111-117. https://doi.org/10.3746/jfn.2005.10.2.111
  21. Go DH, Lee KH, Kim HJ, Lee EH, Lee J, Song YS, Lee YH, Jin C, Lee YS, Cho J. 2003. Neuroprotective effects of antioxidative flavonoids, quercetin, (+)-dihydroquercetin and quercetin 3-methyl ether, isolated from Opuntia ficus- indica var. saboten. Brain Res 965: 130-136. https://doi.org/10.1016/S0006-8993(02)04150-1
  22. Yang Y, Gong T, Liu C, Chen RY. 2010. Four new 2-arylbenzofuran derivatives from leaves of Morus alba L. Chem Pharm Bull (Tokyo) 58: 257-260. https://doi.org/10.1248/cpb.58.257
  23. Song W, Wang HJ, Bucheli P, Zhang PF, Wei DZ, Lu YH. 2009. Phytochemical profiles of different mulberry (Morus sp.) species from China. J Agric Food Chem 57: 9133-9140. https://doi.org/10.1021/jf9022228
  24. Giese J. 1996. Antioxidants: Tools for preventing lipid oxidation. Food Technol 50: 73-78.
  25. Moon JK, Shibamoto T. 2009. Antioxidant assays for plant and food components. J Agric Food Chem 57: 1655-1666. https://doi.org/10.1021/jf803537k
  26. Harborne JB. 1993. New naturally occurring plant polyphenols. In Polyphenolic Phenomena. Scalbert A, ed. INRA, Paris, France. p 19-22.
  27. Hasler CM. 1998. Functional foods: Their role in disease prevention and health promotion. Food Technol 52: 63-70.
  28. Creasy LL, Coffee M. 1998. Phytoalexin production potential of grape berries. J Am Soc Hortic Sci 113: 230-234.
  29. Kim YM, Yun JE, Lee CK, Lee HH, Min KR. 2002. Oxyresveratrol and hydroxystilbene compounds. J Biol Chem 277: 16340-16344. https://doi.org/10.1074/jbc.M200678200
  30. Kim HB, Kim JB, Kim SL. 2005. Varietal analysis and quantification of resveratrol in mulberry fruits. Korean J Seric Sci 47: 51-55.
  31. Kim JS, Ha TY, Ahn JY, Kim HK, Kim S. 2008. Composition and quantitative analysis of stilbenoids in mulberry (Morus alba L.) leaves and fruits with DAD/UV HPLC. J Korean Soc Food Sci Nutr 37: 124-128. https://doi.org/10.3746/jkfn.2008.37.1.124
  32. Kim EO, Lee YJ, Lee HH, Seo IH, Lee, Yu MH, Kang DH, Choi SW. 2010. Comparison of nutritional and functional constituents, and physicochemical characteristics of mulberrys from seven different Morus alba L. cultivars. J Korean Soc Food Sci Nutr 39: 1467-1475. https://doi.org/10.3746/jkfn.2010.39.10.1467

Cited by

  1. Isolation and Identification of α-Glucosidase Inhibitory Compounds, Hyperoside, and Isoquercetin from Eleutherococcus senticosus Leaves vol.43, pp.12, 2014, https://doi.org/10.3746/jkfn.2014.43.12.1858
  2. Establishment of a Comprehensive List of Candidate Antiaging Medicinal Herb Used in Korean Medicine by Text Mining of the Classical Korean Medical Literature, “Dongeuibogam,” and Preliminary Evaluation of the Antiaging Effects of These Herbs vol.2015, 2015, https://doi.org/10.1155/2015/873185
  3. Optimization of Extraction Conditions of Polyphenolic Compounds from Amaranth Leaf using Statistically-based Optimization vol.54, pp.3, 2016, https://doi.org/10.9713/kcer.2016.54.3.315
  4. Antioxidant Activity and Grain Properties of Colored Rice Derived from Insertional Mutagenesis Progenies vol.22, pp.12, 2012, https://doi.org/10.5352/JLS.2012.22.12.1628
  5. Biological activities and acute oral toxicity of citronella and lemongrass oil vol.55, pp.1, 2015, https://doi.org/10.14405/kjvr.2015.55.1.13
  6. Biological activity and analysis of α-glucosidase inhibitor from mulberry (Morus alba L.) wine vol.20, pp.6, 2013, https://doi.org/10.11002/kjfp.2013.20.6.877
  7. Antioxidant Activity of Sansa (Crataegi fructus) and Its Application to the Pork Tteokgalbi vol.33, pp.4, 2013, https://doi.org/10.5851/kosfa.2013.33.4.531
  8. Antioxidant Activities and Changes in trans-Resveratrol and Indigestible Oligosaccharides according to Fermentation Periods in Cheonggukjang vol.43, pp.2, 2014, https://doi.org/10.3746/jkfn.2014.43.2.243
  9. Analysis of Functional Constituents in Mulberry (Morus alba L.) Twigs by Different Cultivars, Producing Areas, and Heat Processings vol.18, pp.4, 2013, https://doi.org/10.3746/pnf.2013.18.4.256
  10. Melanogenesis Inhibitory Activities of Mulberry Seed Ethanol Extracts vol.41, pp.3, 2015, https://doi.org/10.15230/SCSK.2015.41.3.263
  11. Phenolic Acid Composition and Antioxidative Activity of Red Ginseng Prepared by High Temperature and High Pressure Process vol.25, pp.4, 2012, https://doi.org/10.9799/ksfan.2012.25.4.827
  12. Antioxidative and Antidiabetic Effects and Free Amino Acid Analysis of Drinks with Gugija (Lycii fructus) and Maegmundong (Liriope platyphylla) Extract Powders vol.34, pp.2, 2018, https://doi.org/10.9724/kfcs.2018.34.2.178
  13. 잡곡발효물의 제조와 항산화 활성 비교 vol.42, pp.8, 2011, https://doi.org/10.3746/jkfn.2013.42.8.1175
  14. High-throughput detection of antioxidants in mulberry fruit using correlations between high-resolution mass and activity profiles of chromatographic fractions vol.13, pp.None, 2011, https://doi.org/10.1186/s13007-017-0258-3
  15. 굴과 새우를 이용한 새싹삼 페이스트의 품질특성 vol.23, pp.8, 2011, https://doi.org/10.20878/cshr.2017.23.8.020
  16. 울금(Curcuma longa L.) 추출물의 산화억제 및 질소산화물 소거활성 vol.36, pp.1, 2019, https://doi.org/10.12925/jkocs.2019.36.1.13
  17. Morus alba L. Plant: Bioactive Compounds and Potential as a Functional Food Ingredient vol.10, pp.3, 2011, https://doi.org/10.3390/foods10030689