DOI QR코드

DOI QR Code

Frequency Vibrational Behavior Analysis of Double-Wall Carbon Nanotube Resonator

이중벽 탄소 나노튜브 공진기의 주파수 변동 특성 분석

  • 김진태 (한서대학교 컴퓨터정보공학과) ;
  • 이준하 (상명대학교 컴퓨터시스템공학과)
  • Received : 2010.08.02
  • Accepted : 2010.09.16
  • Published : 2011.01.31

Abstract

For a double-walled carbon nanotube resonator with a short outer nanotube, the free edge of the short outer wall plays an important role in the vibration of the long inner nanotube. For a double-walled carbon nanotube resonator with a short inner nanotube, the short inner nanotube can be considered as a flexible core, thus, the fundamental frequency is influenced by its length. In this paper, we analysis frequency variation in ultrahigh frequency nanomechanical resonators based on double-walled carbon nanotubes with different wall length. This results will widely apply to the realization of frequency devices controlling the length of the inner or outer nanotube.

짧은 바깥쪽 탄소 나노튜브를 가진 이중벽 탄소 나노튜브 공진기의 경우, 자유로운 끝은 긴 안쪽 벽의 진동에 중요한 역할을 한다. 짧은 안쪽 탄소 나노튜브를 가진 이중벽 카본 나노튜브 공진기의 경우, 안쪽은 부드러운 코어로 작동하여 기본 주파수가 이들의 길이에 의해 영향을 받는다. 본 논문에서는 서로 다른 길이를 가지고 나노튜브로 구성된 이중벽 탄소 나노튜브 공진기의 주파수 변화를 분석한다. 분석 결과, 안쪽 혹은 바깥쪽 탄소 나노튜브 길이를 제어하는 다양한 주파수 소자를 구현하는데 널리 응용될 수 있을 것으로 판단된다.

Keywords

References

  1. D. Qian, G. J. Wagner, W. K. Liu, M. F. Yu, and R. S. Ruoff, "Mechanics of carbon nanotubes," Applied Mechanics Reviews, Vol. 55, pp. 495, 2002. https://doi.org/10.1115/1.1490129
  2. B. I. Yakobson, C. J. Brabec, and J. Bernholc, "Nanomechanics of carbon tubes: Instabilities beyond linear response," Physical Review Letters, Vol. 76, pp. 2511-2514, 1996.
  3. H. J. De Los Santos, Introduction to Microelectromechanical Microwave Systems, Artech House Publishers, London, 1999.
  4. C. Li and T.-W. Chou, "Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators," Physical Review B, Vol. 68, pp. 073405, 2003.
  5. K. Jensen, K. Kim, and A. Zettl, "An atomic-resolution nanomechanical mass sensor," Nature Nanotechnology, Vol. 3, pp. 533-537, 2008 https://doi.org/10.1038/nnano.2008.200
  6. V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, and P. L. McEuen, "A tunable carbon nanotube electromechanical oscillator," Nature, Vol. 431, pp. 284-287, 2004. https://doi.org/10.1038/nature02905
  7. Q. Zheng and Q. Jiang, "Multiwalled carbon nanotubes as gigahertz oscillators," Physical Review Letters, Vol. 88, pp. 045503, 2002. https://doi.org/10.1103/PhysRevLett.88.045503
  8. M. M. J. Treacy, T. W. Ebbesen, and T. M. Gibson, "Exceptionally high Young's modulus observed for individual carbon nanotubes," Nature, Vol. 381, pp. 678-680, 1996. https://doi.org/10.1038/381678a0
  9. H. Jiang, M.-F. Yu, B. Liou, and Y. Huang, "Intrinsic energy loss mechanisms in a cantilevered carbon nanotube beam oscillator," Physical Review Letters, Vol. 93, pp. 185501, 2004. https://doi.org/10.1103/PhysRevLett.93.185501
  10. K. Y. Xu, X. N. Guo, and C. Q. Ru, "Vibration of a double-walled carbon nanotube aroused by nonlinear intertube van der Waals forces," Journal of Applied Physics, Vol. 99, pp. 064303, 2006 https://doi.org/10.1063/1.2179970
  11. C. E. Guisca, Y. Tison, V. Stolojan, E. Borowiak-Palen, and S. R. P. Silva, "Inner-tube chirality determination for double-walled carbon nanotubes by scanning tunneling microscopy," Nano Letters, Vol. 7, pp. 1232-1239, 2007. https://doi.org/10.1021/nl070072p
  12. S. L. Lair, W. C. Herndon, and L. E. Murr, "Stability comparison of simulated double-walled carbon nanotube structures," Carbon, Vol. 46, pp. 2083-2095, 2008. https://doi.org/10.1016/j.carbon.2008.08.022
  13. J. Tersoff, "New empirical model for the structural properties of silicon," Physical Review Letters, Vol. 56, pp. 632-635, 1986. https://doi.org/10.1103/PhysRevLett.56.632
  14. D. W. Brenner, "Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films," Physical Review B, Vol. 42, pp. 9458-9471, 1990. https://doi.org/10.1103/PhysRevB.42.9458
  15. H. Ulbricht, G. Moos, and T. Hertel, "Interaction of C60 with carbon nanotubes and graphite," Physical Review Letters, Vol. 90, pp. 095501, 2003. https://doi.org/10.1103/PhysRevLett.90.095501
  16. Y. J. Song, J. H. Lee, J. T. Kim, and J. H. Choi, "A study of ultra-high frequency characteristics of twin-wall carbon nanotube resonator," Proc. 2010 International Conference on Electronics, Informations and Communications, pp. 417-418, 2010.