Influence of Fluoro-illite on Flame Retardant Property of Epoxy Complex

에폭시 복합체의 난연 특성에 미치는 불소화 일라이트의 영향

  • Yu, Hye-Ryeon (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Jeong, Eui-Gyung (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Kim, Jin-Hoon (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
  • 유혜련 (충남대학교 정밀응용화학과) ;
  • 정의경 (충남대학교 정밀응용화학과) ;
  • 김진훈 (충남대학교 정밀응용화학과) ;
  • 이영석 (충남대학교 정밀응용화학과)
  • Received : 2010.08.05
  • Accepted : 2010.09.13
  • Published : 2011.01.25

Abstract

In this study, illite, an environmental friendly, low cost, and high aspect ratio additive, was used to improve flame retardant property of epoxy and it was fluorinated to enhance dispersion of hydrophilic illite in hydrophobic epoxy by introducing hydrophobic functional groups. Fluorination of illite enhanced illite dispersion ill epoxy solution before curing and that in the complex after curing. These enhanced dispersions were attributed to the increased affinity of illite to hydrophobic epoxy solution induced by fluorination of illite and the increased intercalation of epoxy polymer or exfoliation of illite by epoxy curing. Hence, limited oxygen index(LOI) of fluorinated illite/epoxy complex increased by 24%, compared to that of epoxy, suggesting that the preparation of fluorinated illite/epoxy complex increased their flame retardant properties.

본 연구는 에폭시의 난연 특성을 향상시키기 위하여 친환경, 저가, 고종횡비(high aspect ratio)를 갖는 무기계 난연첨가재인 일라이트를 사용하였고, 친수성 일라이트의 소수성 에폭시 내 분산 문제점을 개선하기 위하여 불소화 반응을 이용하여 인의 소수화 개질을 실시하였다. 일라이트의 불소화 개질에 의하여 경화 전 에폭시 용액 내에서 일라이트의 분산성 및 경화 후 형성된 복합체 내에서의 일라이트 분산성도 향상되었다. 이러한 분산성의 향상은 일라이트 불소화 개질로 인하여 소수화된 일라이트의 에폭시 용액에 대한 친화성 향상과 복합체 형성 시 에폭시 고분자의 일라이트 층간 삽입 혹은 에폭시에 의한 일라이트의 박리현상 등에 의하여 나타난 현상으로 판단된다. 따라서, 한계 산소 지수(limited oxygen index, LOI)는 일라이트의 불소화 영향으로 에폭시만의 값에 비해 약 24% 정도 증가한 것으로 보아 불소화 일라이트/에폭시 복합제의 제조로 에폭시의 난연 특성을 향상시킬 수 있음을 알 수 있었다.

Keywords

References

  1. C. F. Tsang and H. K. Hui, Thermochim. Acta, 367, 93 (2001).
  2. S. G. Prolongo, M. Campo, M. R. Gude, R. Chaos-Moran, and A. Urena, Compos. Sci. Technol., 69, 349 (2009). https://doi.org/10.1016/j.compscitech.2008.10.018
  3. G. C. Huang, C. H. Lee, and J. K. Lee, Polymer(Korea), 33, 530 (2009).
  4. Y. R. Park, T. H. Yoon, J. I. Yuck, and S. G. Lee, Polymer (Korea), 22, 901 (1998).
  5. K. Iqbal, S. Khan, A. Munir, and J. Kim, Compos. Sci. Technol., 69, 1949 (2009). https://doi.org/10.1016/j.compscitech.2009.04.016
  6. G. Pal and H. Macskasy, Plastics Their Behavior in Fires, Elsevier, Amsterdam, 1991.
  7. V. Babrauskas and S. J. Grayson, Editors, Heat Release in Fires, Elsevier, New York, p 535 (1992).
  8. R. M. Aseeva and G. E. Zaikov, "Combustion of Polymer Materials", in Russian, Nauka, Moscow (1981).
  9. E. L. Schaffer, Behavior of Polymeric Materials in Fire, ASTM International, Toronto, 1983.
  10. F. L. Fire, Combustibility of Plastics, Van Nostrand Reinhold, New York, 1991.
  11. L. Menachem, Proceedings of 1993 Conference Sponsored by Business Communicaitons Company, IV (1993).
  12. G. L. Nelsion, Fire and Polymers II, American Chemical Society, Washington D. C., 1995.
  13. J. Bujdak, E. Hackett, and E. P. Giannelis, Chem. Mater., 12, 2168 (2000). https://doi.org/10.1021/cm990677p
  14. S. J. Park, D. I. Seo, and C. Nah, J. Colloid Interface Sci., 251, 225 (2002). https://doi.org/10.1006/jcis.2002.8336
  15. B. G. Son, T. S. Hwang, and D. C. Goo, Polymer(Korea), 31, 404 (2007).
  16. S. B. Kwak, S. D. Hwang, J. E. Nam, J. S. Ko, H. K. Choo, and J. H. Kong, Polymer(Korea), 26, 260 (2002).
  17. S. G. Lee, J. C. Won, J. H. Lee, and K. Y. Choi, Polymer (Korea), 29, 248 (2005).
  18. J. H. Lee, J. H. Nam, D. H. Lee, M. D. Kim, J. H. Kong, Y. K. Lee, and J. D. Nam, Polymer(Korea), 27, 569 (2003).
  19. C. O. Choo, J. Miner. Soc. Korea(Mineral & Industry), 14, 29 (2001).
  20. I. M. Kang, H. S. Moon, Y. J. Kim, Y. G. Song, and W. P. Lee, Proceedings of the Annual Joint Conference, Petrological Society of Korea and Mineralogical Society of Korea, Cheongju, Korea (2004).
  21. M. S. Han, Y. K. Lee, H. S. Lee, C. H. Yun, and W. N. Kim, Chem. Eng. Sci., 64, 4649 (2009). https://doi.org/10.1016/j.ces.2009.02.026
  22. J. S. Im, I. J. Park, S. J. In, T. J. Kim, and Y. S. Lee, J. Fluorine Chem., 130, 1111 (2009). https://doi.org/10.1016/j.jfluchem.2009.06.022
  23. J. M. Lee, S. J. Kim, J. W. Kim, P. H. Kang, Y. C. Nho, and Y. S. Lee, Appl. Chem. Eng., 15, 66 (2009).
  24. O. K. Park, T. Jeevananda, N. H. Kim, S. I. Kim, and J. H. Lee, Scripta Mater., 60, 551 (2009). https://doi.org/10.1016/j.scriptamat.2008.12.005
  25. S. Liodakis, T. Kakardakis, S. Tzortzakou, and V. Tsapara, Thermochim. Acta, 477, 16 (2008).
  26. H. K. Park, Korean Institute of Fire Science and Engineering Fall Meeting, p.328 (2005).
  27. S. G. Lee, J. C. Won, J. H. Lee, and K. Y. Choi, Polymer (Korea), 29, 248 (2005).
  28. S. Y. Lee and S. J. Kim, J. Miner. Soc. Korea(Mineral & Industry), 14, 44 (2001).