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Compressive Sensing

— Mathematical Principles and Practical Implications —

I. Abstract

The mathematical foundations of the compressive
sensing which goes against the common wisdom of
data acquisition (the Nyquist—Shannon theorem) is
reviewed, The compressive sensing asserts that one
can reconstruct images or signals of interest accurately
from a number of samples far smailer than the desired
resolution of the the image (e.g., the number of pixels
in the image). The compressive sensing has far
reaching implications, 1t suggests the new data
acquisition protocols that translates analog information
to digital

form with fewer

sensors  considered
necessary,

II. Introduction

The convenience and comfort in modern civilization
would be unthinkable without the high resofution
imaging devices digital cameras, televisions, magnetic
resonance imagings (MRIs), etc, But the complexity of
modern civitization demands better devices which have
to deal with extremely large amount {billions or even
trillions of pixels) of data, which creates problems to
store and transmit the data, This necessitates the image
compression algorithms which can reduce large amount
of data sets by orders of magnitudes,

The basic concept of the data compression in
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imaging devices is simple: we transform the image to
an appropriate basis and code only the important parts
to convert high—resolution images into a relatively small
bits, keeping the essential features intact, This in effect
turns a large digital data set into a substantially smaller
one, A most notable example of this image compression
the sinusoid-basis to the
wavelei—basis in JPEG [1], which replaced the classical
JPEG 10 the modern JPEG-2000 standards [2), But this
compression is an “adaptive” compression of existing

was the change of

data which has already been acquired,

The compressive sensing is about the compression
of data at the acquisition level, at the sampling level,
without damaging the capability to reproduce the full
image, The advantage of the compressive sensing is
obvious: if we can compress the data at the sampling
level we can avoid the large digital data set to begin
with, But this is against the common wisdom in data
acquisition,

The celebrated Nyquist—Shannon theorem tells that
the sampling rate must be at least twice the maximum
frequency present in the signal (the Nyquist rate),
According to this theorem the number of samples
needed to reconstruct a signal without error is dictated
by the Nyquist rate, In other words one must sample the
signal at or above the Nyquist rate, And this principle
underlies all existing signal acquisition protocols used
in consumer audio and visual electronics, medical
imaging devices, radio receivers, and so on. But in
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many applications the Nyquist rate is so high that too
which
compression of data prior to storage and transmission

many samplings are needed, makes

“a necessity, This requires the compressive sensing, an

imaging protocol which reproduces high—resolution
images with much fewer samplings than required by the
Nyquist—-Shannon rate,

There is another motivation for the compressive
sensing, In many imaging devices we may have o deal
with the undersampled situations where the number of
available measurements is much smaller than the
dimension of the signal, This is because sampling gels
very expensive and/or ‘very difficult for various
reasons, There are countless examples of this. In
radiology and biomedical imaging, for example, the
sensing process becomes very slow that one can only
measure the object a few times (as in MRI), And in gene
expression studies one may have to infer the gene
expression level of thousands of genes with a low
number (typically tens) of observations, Moreover, in
the applications which use high—speed analog to digital
converters (medical scanners and radars), increasing
sampling rate gets very expensive because of the
current limitation of technology, Also, in imaging
devices which use the neutron scattering, the
measurements gets very expensive, In other cases the
number of sensors may be limited, and so on, In these
cases one is forced to reproduce the images with the
undersamplings (i.e., the compressed sensing).

A first indication that the compressive sensing is
possible appeared in 19703, when  seismologists
reconstructed images of reflective layers within the
earth based on the data that did not seem fo satisfy the
criterion  {3]. The
compressive sensing developed later around 2004 by

Nyquist-Shannon theory  of
Candes, Donoho, Rombérg, and Tao {and others)
asserts that one can recover certain signals and
images from far fewer samples or measurements than
the traditional methods require [4-7], The theory is

"based on a wide ranges of fields in applied sciences

and engineering probability theory, information theory,
mathematical optimization theory, theoretical computer
sclence, and others, The purpose of this article is to
review the key mathematica’l ideas and some important

results, and 1o discuss the implications of ihe
compressive sensing. Doing this we will show why the
compressive sensing is a concrete protocol for sensing
and compressing data simultaneously.

The compressive sensing is about reproducing the
full signal with undérsampled data, It relies on two
principles: the sparsity which has to do with the signals
of interest and the incoherence which has to do with
the sensing method, In addition to this, of course, it
relies on the mathematicaltheorems based on two
principles which assures that we can reproduce the full
signal with the undersampled data,

The sparsity is based on the idea that for many
signals fhe information rate are often much smaller than
suggested by its bandwidth, In otherwords in many
cases the useful informations are sparsely distributed
that, when expressed in a proper basis, they have
concise representations so that we can compress them
to make them much smaller, This is because each
signal has its own unique siructurewhich is distributed
sparsely when we measure it, It is this sparsity which
allows us efficient compression of data and efficient
data acquisition process,

The incoherence, on the other hangd, is based on the
idea that signals having a sparse representation must
be spread out in the domain (the dual space) in which
they are acquired, just like the Dirac's delta function in
space or time is spread oul in the dual space,
momentum or energy (or wave vector or frequency)
space, This tells that the sampling waveforms, unlike
the signal of interest, must have an exiremely dense
representation in the basis in which the signal has
concise representation - So, when we encode the
signal, we should exploit this incoherence, In other
words the incoherence tells us what should be the most
effective sensing methods,

Of course, it has been well known that typical signals
have structures, so that they can be compressed
without much loss, For example, JPEG 2000exploits the
fact that many signals have sparse representation in a
fixed basis, so that one can store only a small number
of adaptively chosen largest coefficients, discarding all
insignificant ones (typically more than 90 to 95
percent). Obviously this type of data compression
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{discarding most of the data after the massive data
acquisition) is extremely wasteful, To be economic we
need data compression at the acquisition level, so that
we do not have to measure the unnecessary
informations only to discard them later,

The compressive sensing allows us to directly
acquire just the “minimum” important information of the
signal (about four times the number of the sparsity)
from just a few sensors as in random sensing, and
“decompresses” the measured (undersampled) data to
reconstruct the signal with accuracy at least as good
as what one has with typical compression after the
that the
reduce the

number of necessary samplings by a factor of roughly

massive data acquisition, This means

compressive sensing can practically

ten or twenty percent, This, of course, is an impressive
gain, And here the sparsity of the signal and the
incoherence of the sensing method piay the central
role,

This means that one can design an efficient sensing
protocol that captures useful information from a sparse
signal and condense it into a small amount of data, All
we need is correlating the signal with a small number
with  the
sparsifying basis. What is really remarkable about this
protocol is the followings: First it allows a sensor which
the
non—adaptively, without

of fixed waveforms that are incoherent

captures information in a

trying
Second, it allows numerical optimization procedures

sparse  signal

to comprehend it

with which we can reconstruct the full signal from the
small amount of collected data, In other words, we can
have a very effiient and simple signal acquisition
protocol which allows us to sample the signal at a very
low rate yet reconstruct it fully, in a signal independent
fashion, This is the essence of the compressive
sensing.

Although the compressive sensing is a relatively new
and young field which has yet to be matured, i clearly
provides us great opportunity to advance modern
civilization a step further, In Korea the first international
workshop on compressive sensing was organized last
November by School of Electrical and Computer
Engineering, Ulsan Institute of Science and Technology.
But clearly we need more scientists and scientific

this

internationally, This article is intended to provide a

activities in field, domestically as well as
tutorial introduction fo the subject. But there already
exist many excellent review articles on the subject by
the early proponents, We recommend the articles in the
special section of /FEE Signal Processing Magazine,
Volume 25, March 2008, in particular the articles by
Romberg, Candes and Watkin, and Baraniuk, to the
interested readers [8,9],

Il. Problem of Compressive Sensing

Consider the general problem of reconstructing an
image or a signal, which we choose to be a
real-valued function f(z) of space (or time} for
simplicity,. We can discretize = 0 n  points
z; (i=1,2,..,n) and f(z) to n numbers f; = f(z;) and
treat it as an n—dimensional vector }): (Fisfosfartf)
in R" where (fyfufs--f,) are identified as the
coordinates (pixels) of ? in the canonical basis, It is
assumed that n is a large number, Now, introduce
another complete set of orthonormal vectors (the
vectors) with

measuring a; = (ailaaiZ’a’éS""’ain)

a;a;=6,in R" and measure f by a, to reproduce
it

g=acf=ay f;, =% ga,. ()
Here we have assumed that a, are orthonormal, but
this assumption is not essential, All we need is the
linear independence, The measurement generates
another vector ;:(gl,gz,...gn) in R, and clearly all
information about ? is stored in ; (and vise versa),
The choice of a, determines the type of the
information we collect, so that it tells what type of coded
imaging systems we use, For example, if a, are the
sinusoids with trequencies w;, we are essentially
collecting the Fourier coefficients of the signal (as in
magnetic resonance imaging). If they are the delta
the

two~dimensional

Slz—=z;), we

pixels f,.

functions are  measuring

{one—dimensional) For
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images, if they are the delta ridges, we are measuring
the line integrals of the image (as in tomography), And
if they are the indicator functions on square, we are
again collecting the pixels (as in standard digital
cameras),

Since 7 and ; are equivalent to each other, we can
certainly reproduce the signal f with ;,

—

f=A4g, fi=A;9, Ay=GNy;. Q)

But in many cases We find that most of the n
coefficients g; are very small, so that actually only a
small number & of them become important. In this case
the signal f is called k-sparse, and is deemed
compressible, Of course, here we are interested in the

~case when k< n.

So, if the signal is k—sparse, we can approximate f
with only k-coefficients (neglecting (n—%) of them),
and express it by a linear combination of k basis
vectors of a;. In other words, we only need a much
smaller data (k coefficients) to reproduce the =
—dimensional vector 7 This implies that we could
reproduce the signal with only k& measurements, if we
are clever enough, _

This raises the interesting question: Can we
construct an imaging device which can reproduce an
arbitrary k—sparse n—dimensional signal ? with only m
{m = k) samplings which is much smaller than n'? From
the above discussion one might think that the answef
is definitely yes, Indeed the above argument implies

that, choosing a, = f/Ifl, we could always approximate

the signal f with only one measurement g, and one.

vector a,, making all other g, with i =2,3,...,n zero, But
this is totally misleading, The reason why we could
easily approximate the signal 7 with & coelfficients was
simply because we already had all information about 7
namely all g, and a;. In other words we ‘could do this
because we knew everything and knew which g; could
safely be neglected, But what we want to know is the
answer in the absence of a priori knowledge of g,, for
arbitrary k—sparse signal, In this case the answer to
this question is -not simple,

To wunderstand the meaning of this question,
remember how the existing imaging devices work, Here
the full » samples f, of the signal are acquired, the
complete set of transform coefficients g, is computed, &
largest coefficients are identified and all remaining small
coefficients are discarded, and & largest coefficients
are encoded for the reproduction {and transmission) of
the signal, But this process has three inherent
drawbacks, First, the initial number of measurements n
is too many, Second, all coefficients g, must be
computed even though only k of them is needed, Third,
the locations of large coefficients must be encoded for
the reproduction of the image,

The
inefficiencies by directly acquiring the compressed

compressive  sensing addresses  these

signal, Consider a general linear measurement process ‘
which uses a different sampling method based on m
orthonormal  measuring  (encoding)  vectors b,
(i=1,2,..,m) in stead of n vectors a;. Now, compute

m inner products (hy,hy,--h,,) (m < n) between 7
and b, = (by,bipbigs-sbym) (6=1,2,..,m) to encode fl

~ =

hy=b,f=b; Jiz, =b; ap 9= B Ajk 9 By =bij (3)

where B énd B-A are m X n matrices, Here again
the orthonormality of 5i is not essential (only the linear
independence is), but we assume that for simplicity.
Clearly ﬁ=(h1,h2,...,hm) can be viewed as an m
—dimensional vector in R™ | We can interpret that the
basis a, (or the matrix A) is used for measuring the
signal, but the basis b, (or the matrix B) is used to
represent or encode it

But an important point here is‘ that, unlike the
complete set a;, b , form an incomplete set of basis in
R™ because m < n, Of course we can extend the Bi
basis to make it complete, adding n—m orthonormél
vectors, But what is crucial is that we use only m
number of 5i to encode the signal, In other words the
dimension of the encoding space R"‘ is much smaller

than the dimension of the measuring space R", and
this reduction of the dimensionality is the crux of the
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(Fig. 1) The undersampling of a 4—sparse n—pixel image ?: A; encoded to an m—dimensional vector B in R™ by
the matrix B. Here 4 and B represent an (TLX") discrete cosine transform (DCT) matrix and (mxn) random
Gaussian encoding matrix, (A) shows how f is transformed to ¢ and encoded to h, And (B) shows the
resulting dimensiogalily reduction of ¢ to h, There are 4 columns in BA that correspond o 4 non—zero coe
flilents of g, and h becomes a linear combination of these columns,

compressive sensing,
Now, the problem that we tface in compressive
sensing is designing a stable matrix B such that

1. The salient information in any k—sparse signal
should not be damaged by the dimensionality
reduction from ?EP\'\" to ﬁeﬁm

2. There must be a practical and reliable reconstruction
algorithm to recover }g from only m {(m = k) encoding

vectors b,

3. The encoding matrix B must be non—adaptive, so
that it should not depend on the signal, In other
words B must be applicable to any k-sparse
signal,

If we do, than we can reconstruct the signal ? with
only m {m < n) measurements, without going through
the large » measurements, But the problem appears to
be ill-conditioned, because in this case the encoding
matrix B must allow the reconstruction of the n
—dimensional vector ? from only m measurements,

This dimensionality reduction of the encoding space
is schematically shown in (Fig. 1) Here the n—
dimensional signal ? is encoded by an m—dimensional
vector 7 with the m xn matrix B, And the problem
here is to reproduce the full signal 7 with the
undersampled E Under the normal circumstance this
would be hopeless fo solve, because this is an
underdetermined matrix equation, But we can solve
this, What allows us o solve this problem is the k&
~gparsity of ? that the signal has only k non-zero
coefficients,

IV. Incoherent Sampling: Mathematical
Principles

To solve the problem we have 1o do two things, First,
we have to identify the important (nonzero} coefficients
of g, and register them, Second, we have o invent an
algorithm to reconstruct the signal with the registered
data, The first problem is the problem of undersampling
to figure out what is the best strategy to minimize the
measurements to encode (o identiy the important
coefficients) a sparse signal, Mathematically this
translates to the problem of finding a best choice of Bi
which can minimize the measurements and at the same
time register the important coefficients (the sparse
spikes) of f or equivalently ;_

As we have pointed out, if we know the locations of
the non—vanishing coefficients, we only need &

measurements (with k important a,). In fact with

b, :7/l?\ (we can always make f to be 1-sparse so
that) we need only one measurement to reproduce the
signal, But this is an adaptive choice, which we can do
only when we already know the signal 7 Obviously it
does not work for other signals,

Clearly the answer to the problem is deeply related
to the the signal reconstruction: the small set of
measurements should be able to reproduce the full
signal, For this to be possible, of course, the small set
of the measurements should record all important
characters of the signal, So we have to find out a most
efficient way to register the important characters of any

sparse signal, without trying to comprehend the nature
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of the signal in advance,

Al this point the concept of the incoherence, the other
pillar of the compressive sensing, plays the important
role. To explain this consider two bases a; and 52. {or
two matrices 4 and B) we have introduced before, The
coherence between the two bases is defined by

WA, B) = vn - maz |(:xi‘b;1, 1<dqj<n) (4
1<wA,B) < vn .

In other words the coherence measures the largest
correlation between any two elements of 4 and B, The
linear algebra assures that u(A4,B) ranges from 1 to
Vn When u=1, we call 4 and B are maximally
incoherent,

A good example of maximally incoherent bases is the
delta—function basis and the sinusoidal basis, Another
example of bases is the
delta—function basis and the noiselet basis [10]. The

maximally incoherent

noiselet basis is made of Ei = (b;1,b;9,--b,,,) where b,
are given by the noiselets, the unit-normed and binary
valued step functions taking values +1/vn or
—1/+/n with equal probability. The noiselet basis is
also known to be highly incoherent with wavelet bases
(it is well known that p=2 between the noiselet basis
and a typical wavelet basis). And the random matrices
are largely incoherent with any fixed basis,

The importance of the incoherence in compressive
sensing comes from the following observation: When
we do not know a priori the location of the important
coefficients of a sparse signal, the best strategy is to

choose the encoding basis Bi to be maximally
incoherent with a,. In other words the best strategy to
encode a sparse signal is a random sensing,

The justification for this random sensing strategy is
that each sparse signal has its own unigue set of
measurement in the maximally incoherent basis Si, To
understand this it is important to realize that the
mathematical basis for this incoherence principle is
very much like the Heisenberg's uncertainty principle in
guantum mechanics, In physics it is well known that a
sparse peak (the Dirac's delta—function) in time or
space is evenly distributed in the dual space (energy or

momentum space, or equivalently frequency and wave
vector space) after the Fourier fransformation, Here the
k—sparse signal (k delta—function peaks) in the
measurement domain is evenly distributed, so that a
best strategy to encode them is to adopt the random
sensing based on noiselet or random basis,

Remarkably, this random sensing strategy has other '
important advantages, First, it is nonadaptive, In other
words it works for any sparse signal, so that we do not
have to taylor the random matrix to each signal,
Second, the noiselet basis (or any random basis) can
easily be generated so that it need not be stored to be
applied, This is crucial for numerically efficient
implementation of compressive sensing, which is very
important for practical applications,

To make the incoherent sampling mathematically
precise, let us try to reconstruct the image with m
measurements l_{ Clearly there are huge number of »
—pixel images which can provide exactly the same
measurements (the same encoding vector E), simply
because m is much smaller than n, So we have to find
out the sparsest n—pixel image, namely the unigue 7
that with the m
Mathematically this amounts to finding out the n

is  consistent measurements,

—dimensional vector 7 which satisfies the following

convex optimization problem,

Problem I: Find = which minimizes |l Azl,, subject to

Bz = h.

Here IIA;HO denotes the I,—norm (i.e., the number of
non—zero coefficients} of the vector A;, and the
constraint min IIA%IT{, assures that z indeed has the
minimum number of non—zero coefficients (ie, k
—sparse} as we wish, Unfortunately solving the above
is NP-hard
polynomial-time hard), This means that solving the

problem (e, non—deterministic and
problem is computationally infeasible, requiring the
exhaustive enumeration of all |, G, possible location of
the k non—zero entries in z [11].

Surprisingly there is an optimization problem that
works almost as well, the optimization based on the [,

~norm in stead of the ly;—norm

Compressive Sensing ~ Mathematical Principles and Practical Implications ~



min Azl subject to Bz=h. (5)

This problem is far easier o solve, bscause it can be
recast as a linear program which can be solved by a
number of modern techniques [12], And the solution
can exactly recover the k—sparse signal ? This is
based on the following central theorem in compressive
sensing {13],

Theorem I: If
m=c \2(4,8) klog n (6)

for some positive constant ¢, the solution to (5) is
exact with overwhelming probability,
Now, the following commenis are in order:

1. The importance of the incoherence in encoding is
obvious in the theorem The smaller the
coherence, the fewer samples are necessary, This
is why the incoherent sampling is crucial in the
compressive sensing,

2. With the maximal incoherence the number of

necessary samplings becomes of the order of
k log n, in stead of »n, This is a huge reduction
in sampling. .

3. This is independent of the signal, which does not
require any a priori knowledge of the number of
non—zero coefficients and their locations, All we
need is a decoder which can “decompress” the
undersampled data,

This theorem indeed assures that there exists a
concrete acquisition protocol for the compressive

sensing encode in a

the signal non—adaptively
compressed form with random sensing, and decode the
compressed data with the I,—minimization,

A closely related concept to the incoherence is the
uniform uncertainty principle, which has to do with the
uniqueness of the solution of the above convex
optimization problem, To explain this consider the
mXn matrix B made of m random test vectors 5i, If

we have

m=c-klog n, )

where C'is a known constant, then for any k—sparse
vector 7 the energy of the measurement B? will be

comparable to the energy of ? itself [7],

Here u}n‘g denotes the standard I,—norm (the energy)

of the signal ? In other words the proportion of energy
of ? that appears in the measurements is roughly the
same as the undersampling ratio m/n, This is known
as the uniform uncertainty principle, and in this case
the matrix B.is said to obey the uniform uncertainty
principle,

The importance of the uniform uncertainty principle is
that it assures the solution is unique, To understand
this let {8) holds for sets of size 2k, and measure the
k—sparse vector = Bf as above, Now, we ask if
there is any other k—sparse (or sparser) vector ? that
yields the same measurement }: The answer is no, i
there were such ? then u= 7~f would be 2k

—sparse and have Bz_[:o, This is incompatible with (8),

V. Geometry of /; Minimization

To solve the compressive sensing problem it was
crucial {and very ingenious) that we could replace the
I,—minimization condition by the !;—minimization, even
though they are fundamentally different. This is of
utmost importance, because this makes the NP—hard
problem to a solvable one and thus allows us to have
realistic signal reproduction algorithm, Without this the
compressive sensing would have been practically
impossible,

One might wonder what is so special about this I,
minimization, and why can't we impose the more famitiar
{and standard) I,—minimization which minimizes the
energy of the signal. The truth is that there is good
reason why the I,—minimization does not work and why

the 1, minimization works so well in fact the [,
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minimization almost never find the k—sparse solution,
producing instead a non—sparse solution with many
the
difference of the geometry between two minimizations
[14,15],

To understand this let n=3 for simplicity and

non—zero coefficients, This has to do with

consider the 1, and I, balls in R* as shown in {Fig, 2.)
Here (A) shows the subspaces containing 2—sparse
vectors in R*® which lie close to the axes.

And (B) illustrates the I, ball of a given radius R,
which is made of the points lz,|+ |zl +lz4l < R, Clearly
it is anisotropic, More importantly it is “pointy” along the
three axes, Now let the point ; be a sparse vector
which we want to reproduce with the encoding E and
let the green hyperplane to represent the set of all
signals ; which provides the same encoded value ﬁ)
The task in (5) is to find the point on this hyperplane
which has the minimum I, norm,

To visualize how the recovery program accomplishes
this, take an I, ball with a small radius and enlarge it
gradually till it hits the hyperplane, By definition the first
point of contact is the vector that solves the problem,
Now, it is intuitively clear that the pointiness of the I;
ball together with the linearity (i.e,, the flatness) of the
hyperplane tells that the intersection (the contact point)
occurs at precisely where the sparse signals are
located, on the axes,

In comparison, consider the I, minimization shown in
(C). Obviously the I, ball is spherical and isotropic, In
this case the first encounter of the expanding I, ball

with the hyperplane almost always occurs off the axes,

A

(B)

where the sparse vectors are not located, So with the
the I, minimization it is very difficult to find the &
—sparse signal which satisfies the encoded data, And
this difference becomes more dramatic in higher
dimension when n becomes very large, This is why the
I, minimization becomes completely useless in the
signal recovery,

Although the above argument is very intuitive, it does
tell that we can have a practical recovery program
based on the 1; minimization, But actual computation to
find the solution, however, is non-trivial, This is
becausethis type of problem obviously has to deal with
hundreds of thousands of encoding data to construct
millions of pixels signals, Clearly this will involve a good
deal of computation, Fortunately there have been great
advances recently in convex optimization which can
deal with this type of problems [16]. The computational
complexity of this type of problem (after the linearization
of the problem) becomes about the order of O(n?), but
it is manageable, And a good rule of thumb is that
solving the I; minimization program is about thirty to
fifty times as expensive as solving the I, minimization

problem,

VI. Stability Of Reconstruction
Algorithm And Error Estimate

The above theorem assures that a compressive
sensing is possible, with overwhelming probability of
success, This is very nice, But this is not enough,

©

{Fig. 2) The geometry of I, and I, minimizations in R®, Here (A) shows the subspaces containing 2-sparse vectors
in R?, (B) shows the I, ball |z|+lx,|+z,l = R and the hyperplane # defined by h=Bz. The encounter of the
hyperplane with the I, ball occurs exactly where the sparse vectors-are located, (C) shows the I, balls with
|, + |z, + 1z, = R, but here the encounter in general occurs at the point where there is no sparse vectors
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because the real world is not so ideal First of all, in
reality most of the signals are not exacily sparse, but
only approximately so, Moreover, they always have
noise, especially because sensing devices do not have
infinite precision, To make things worse, the above
theorem assures that the solution “almost always”
exists with overwhelming probability, but not always, In
other words, the theorem admits that there is a
possibility of tailure, even though this possibility is
extremely small, Therefore the compressive sensing
must be able to deal with these non-ideal realities, At
the very least we must have assurance of the stability
in the reconstruction

algorithm, that a small

perturbations in data should not cause a large
perturbation in the reconstruction. And of course, we
need assurance of no failure, In other words we have
to improve the above theorem to be deterministic, not
probabilistic,

To deal with these problems, we have to consider

the problem of recovering the signal with a
contaminated data, with
h=Bf > Bf+z, ©)

where 2 represents a small bul finite stochastic
noise or unknown error term, This means that we have
to modify the above problem 10 a new problem which
can take care of the noise,

Problem Il: Find z which minimizes IIAEIII, subject to
“BZ“‘E'E <e, where ¢ is the upper

bound of the noise in the data,

A key notion to resolve this problem is the so—called
the restricted fsomelry property, which is a refinement
of the uniform uncertainty principle [4] Consider the
encoding matrix B again, Define the isometry constant
8, for each integer k=1,2,... as the smallest number
such that

holds for all k—sparse vectors : if 9, is not too
ciose to one, the matrix B is said to have the restricted
isometry property, When this properly holds, B
approximately preserves the Euclidean length of &
—sparse signals, In this case the k—sparse vectors can
not be in the null space of B, This is important,
because otherwise there would be no hope to
reconstruct these signals,

Another way to describe the restricted isometry
property is that all subsets of & columns of B are in fact
nearly orthogonal, This is because in this case B
approximately preserves the Euclidean length of &
—gparse signals, But notice that the columns of B can
not be exactly orthogonal because the matrix has more
columns than rows,

The importance of this restricted isometry property
comes from the following observation, Suppose that 4y,
is sufficiently smaller than one. Then the distances
between any two k—sparse vectors ;1 and ;2 must

satisty
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In other words all pairwise distances between two k

—sparse signals must be well preserved in the
measurement space, This fact guarantees the existence
of efficient and sfable reconstruction algorithm for
discriminating  k—sparse signals, as the following

theorem assures [13],

Theorem |I: Assume the matrix B has the restricted
isometry property and let &, < v/2 —1,
Then the solution z, to the Problem I

obeys

le—z 1 < Clle—2
oz, (12)

vk

H;_Zong = ()6 +C,1'67

for some constanis C; and €, where z, is the =

with all but the largest & components set to zero,
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This theorem tells that minimizing the I,~norm
recovers the k—largest entries of an n—dimensional
unknown signal with only m measurements, Clearly this
is stronger than the previous theorem, {f ; is k—sparse,

then ;:;k, and thus the recovery is exact, And this

new theorem deals with all signals, If z is not k
—gparse, then the theorem asserts that the quality of
the recovered signal is as good as if one knew ahead
of time the location of k largest values of z and
decided to measure those directly, So, the reconstruct
is as good as the one provided by an oracle which,
with the full and perfect knowledge about ;, exiracts
the k most significant coefficients for us,

An important feature of this theorem is that, unlike
the previous one, it involves no probability at all, It is
deterministic, It guarantees to recover all sparse k
vectors exactly, and essentially the k largest entries of
all vectors, In other words there is no chance of failure,

Furthermore, it handles the the noise gracefully, The
reconstruction error is bounded by two terms, the first
term which occurs without any noise and the second
term which is proportional to the noise level,

In conclusion, this theorem assures that a realistic
compressive sensing mechanism which works all kind
of not necessarily sparse signals and handies noise
nicely is indeed possible, That is, if we can design
efficient sensing matrices which obeys the restricted
isometry property. Can we?

VI. Random Sensing Matrices

So the remaining problem is to design sensing
matrices which has the restrictéd isometry property,
with the property that column veclors taken from
arbitrary subsets are nearly orthogonal, And the larger
the better, This
randomness re—enters in the picture,

these subsets, is where the

Fortunately we do not have to worry about this
problem either, There already exist several ways to
consiruct such matrix, We list just some of them:

A, Sample n column vectors uniformly at random on

the unit sphere of R™,

B. Sample independently and identically distributed
entries from the normal distribution with mean 0
and variance 1/m.

C. Sample random projection P and normalize
B=/n/mP.

D, Sample independéntly and identically distributed
entries from a symmetric Bernoulii. distribution or
other sub—Gaussian distribution,

All these matrices are known to obey the restricted
isometry property with overwhelming probability,
provided that [5,6]

m=C-k log (13)

ﬁ_
ke

where C is another constant which depends on each
case. And, of course, there are other ways to construct
such metrix, So we do not have to worry about devising
an encoding matrix which satisfies the restricted
isometry property, ‘

A remarkable feature of these random matrices is
that they are universal the sparsity basis need not even
be known designing the encoding matrix, Moreover,
they are almost optimal, In other words there are ho
measurement matrices and no reconstruction algorithm
whatsoever which can reproduce the signal with
substantially fewer samples, This means that the
random sensing with the 1, minimizalionv is an optimal

compressive sensing strategy.

VI, Discussions and Implications

In this article we have described the underlying

" logics of the compressive sehs’mg the motivation, the

basic’ concepts, the ' mathematical principles, the
undersampling mechanism, the conditions for signal
reproduction, and the stability of the reproduction
algorithm, For the clarity of the logic we have skipped
the details of the arguments. But our discussion
that and stable

compressive sensing mechanism which can reproduce

assures there exists a robust
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practicalty all signals with far fewer samplings than
required by the conventional imaging technigue (the
Nygquist-Shannon rate),

Theoretically the above discussion tells that one can
in principle compress the n data to the order of
k log(n/k) But a practical question at the end of the
day is how much can we actually compress the data in
reality,. As we have already pointed out, the rough
estimate is four times the sparsity. Now, assuming that
k/n is a few percent (which is generally true in many
applications), one may conclude that about ten or
twenty percent of n samplings would suffice in average,
In other words one may expect eighty to ninety percent
compression of data, And in real applications the
compressive sensing often works better than this,

An important feature of the compressive sensing
which can be very useful is that it is asymmetric in data
acquisition and signal reconstruction, In many imaging
devices, the data acquisition process is complicated
and expensive, The compressive sensing trades off this
complicated data acquisition process with the data
reconstruction process, which can be performed on a
digital computer which need not even be collocated
with the sensor,

The compressive sensing has huge applications, in
almost all areas that use imaging devices, As a general
rule of thumb, any two stage techniques or indirect
imaging involving the use of a computer for the
reconstruction of the signal is bound to find an
application of compressive sensing technique,

Actual status of implementation of compressive
sensing varies very much, In some cases one may only
need new softwares which can be used with the
existing devices, but in other cases one may have {o
develop new hardwares as well, But it is stitl developing
field and there are many unanswered questions and
challenges, And, of course, there are certain
disadvantages and tradeoffs to make in compressive
sensing, Here we discuss two  examples the
compressive sensing in digital camera and MRI, for
simplicity,

The compressive sensing allows us to build a
simpler, smalier, and cheaper digital camera that can
operate efficiently across a much broader spectral

range than the conventional silicon—based cameras the
new “single—pixel” camera based on an optical
computer comprised of a digital microwave device
(DMD), a single photon detector, and an analog—digital
(A/D} converter [17]. Here the optical computer
computes random linear measurements of the image
under view, and the image is then reconstructed by a
digital computer,

The single-pixel design reduces the required size,
complexity, and cost of the photon detector array down
to a single unit, which enables the use of exotic
detectors that would be impossible in conventional
digital cameras, These include a photo—~multiplier tube
or an avalanche photo—diode for low-light
(photon—limited) imaging, a sandwich of several
photo~dicdes sensitive to different light wavelengths for
multimodal - sensing, a spectrometer for hyperspectral
imaging, and others,

In addition to this sensing flexibilities, a practical
advantage of the single—pixel design is that the
quantum efficiency of a photodiode is higher than that
of the pixel sensor in a typical CCD or CMOS array,
since the fill factor of a DMD can reach 90 percent
whereas that of a CCD/CMOS array is only about 50
percent, Another advantage is that each DMD
measurement receives about n/2 times more photons
than an average pixel sensor, which signifocantly
reduces the image distortion from dark noise and
read—out noise. But of course, there are challenges,
One challenge is to extend the single—pixel concept to
wavelengths where the DMD fails as a modulator, such
as THz and X rays,

MRl is a medical imaging device which has an
inherently slow data acquisition process, so that the
compressive sensing offers potentially significant scan
time reduction, with benelits for patients and health
care budget [18]. It obeys two key requirements for the
compressive sensing: MRI imagery is naturally sparse
and compressible and MRI scanners naturally acquire
the encoded samples (rather than the direct pixel
samples),

The potential applications of the compressive
sensing in MRl are the followings rapid 3-d
angiography, whole—heart coronary imaging, brain

201 19 BAIFUYA| 438 ME 4]



»

42

42

And different
applications bring us different constraints imposed by

imaging, ~dynamic heart . imaging,
MRI scanning hardware or by patient considerations,
The compressive sensing can significantly accelerate
the magnetic resonance angiography, enabling better
temporalresolution.  or  alternatively improving the
resolution -of current imagery without compromising the
scan time, In whole—heart coronary imaging, it can
accelerate the data acquisition, allowing the entire
heart to be imaged in a single breath, Similarly in brain
imaging it reduces the data collection time while
improving the resolution of the image, And in dynamic
heart imaging it can récover the dynamic sequence at
much higher rate and at the same time reduce the
image artitact significantly,

But. here again, many crucial issues remains
unsettled, These include optimizing sampling trajectories,
developing improved encoding mechanism, improving
the speed of the reconstruction, and improving the
quality of the reconstructed image in terms of clinical
significance,

Qur main concern in compressive sensing in this
paper has been the reproduction of the signal with
to k

undersamplings, But in principle the compressive

undersamplings, to reduce n samplings
sensing can also be used to enhance resolution of the
images with the n samplings, to turn the low resolution
datasets to high resolution samples,

Ultimately, one could think of @ compressive sensing
for quantum information, In all current imaging devices,
the signal processing means the classical signal

processing {just like all present computers, no matter

how complicated, are performing classical operations).
But suppose we have quantum signal, in this case one
might ask whether a compressive sensing of the
quantum signal'is possible, Of course, at this point it is

not even clear to figure out what this question means, .

or whether this guestion has any meaning at all, But
certainly this is a mind provoking guestion,
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