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I. Abstract

As a result of quickly growing data, a digital
transmission system is required to deal with the
challenge of acquiring signals at a very high sampling
rate, Fortunately, the CS (Compressed Sensing or
Compressive Sensing) theory, a new concept based on
theoretical results of signal reconstruction, can be
employed to exploit the sparsity of the received signals,
Then, they can be adequately reconstructed from a set
of their random projections, leading to dramatic
reduction in the sampling rate and in the use of ADC
(Analog—to—-Digital Converter) resources, The goal of
this article is provide an overview of the basic CS
theory and to survey some important compressed
sensing applications in wireless communications,

I. Introduction

A number of signal processing algorithms have
recently been developed for capturing and extracting
information from continuous signals, The Nyquist—
Shannon sampling theorem provides a bridge between
continuous.signals and discrete signals, The theorem
shows that a bandlimited analog signal that has been
sampled can be perfectly reconstructed from an infinite
sequence of samples if the sampling rate exceeds twice
the maximum frequency present in the signal; this is
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called the Nyquist rate. Since signal processing moved
from analog to digital domain, digitalization has made
digital systems more robust, fiexible, and cheaper than
the analog systems, ‘
Nowadays, as a result of the quickly growing data,
the digital transmission system is required to deal with
the challenge of acquiring signals at a very high
sampling rate, This fact is usually ignored by sigynal
processing algorithms which assume that it can be
solved by quick development of hardware technologies,
in reality, however, this requires exiremely expensive
and complex ADCs (Analog—to—Digital Converters), For
instance, many coherent UWB (Ultra Wide Band)
systems need to acquire a UWB pulse by using an ADC
with several GHz sampling rate or even higher on the
receiver side,
the CS
Compressive Sensing) theory, a new concept based on

Fortunately, (Compressed Sensing or
the theoretical results of signal reconstruction, can be
employed to exploit the “sparsity” of the received
signals, They can then be adequately reconstructed
from a set of their random projections, This leads to a
dramatic reduction in the sampling rate and in the use
of ADC resources [1]. The fundamental difference
between the CS and the classical sampling is a manner
in with the two frameworks deal with signal recovery
(i.e., the problem of recovering the signal from .the
measurements), In the Shannon—Nyquist framework,
signal recovery is achieved through interpolation, a




linear process that requires little computation and has
a simple interpretation, However, CS signal recovery is
achieved by using nonlinear and relatively expensive
optimization—based or iterative algorithms [2—4], Most
of the CS literature has focused on improving speed
and accuracy of this process, CS is considered
promising and is drawing a lot of attention from
scientists and engineers in different disciplines,

The goal of this article is to provide an overview of
the basic CS theory and to survey some important
compressed  sensing

applications  in wireless

communications, reviews  the
background of the CS theory. Section il introduces
some CS applications that have the signals sparse in

the time domain, In Section IV, CS applications with the

The next section

signals sparse in the frequency domain are presented,
The last section discusses the current research of CS
applications and the future approaches,

Il. Compressed Sensing

Referring to [1,5,6], we briefly describe the CS theory
in this section, Consider a real-valued, finite—length,
one—dimensional, and discrete—time signal x that can
be viewed as an Nx 1 column vector in R, Any
signal in RY can be represented in VX1 vectors

{z/)n}nN _, called a set of basis vectors, So, a signal =

can be formulated as

N
z= 29n¢n or z=W0, n
n=1

where ¥ is the N X N basis matrix with the vectors

{,}V_, as columns and @ is the N1 column

vector of the weighting coefficients, Thus, z is the
representation of the signal in the time domain, while @
is the representation in the ¥ domain,

The signal z is said to be A—sparse if it is a linear
compination of only K {< N) basis vectors; this
means that only K elements of the coeflicients 8 are
nonzero and the remaining N— K elements are zero,
Itz has a few large A coefficients and many small

coefficients, then it is called compressible,
The CS method measures the signal by computing
M inner products between x and a collection of

vectors {¢m};":=l, as in y,, = {z,¢,, ). Aranging
the measurements in an M X1 vector y and the
measurement vectors ¢ as rows in an M < N matrix

@, y can be expressed by projecting & on the matrix
& as

y= o= OUI= 60, @

where ©= & is the M X N matrix. The rate M/ N is
then called the compressive rate, which expresses how
much the sampling rate can be reduced,

When the sparsity basis ¥ and the malrix @ are
incoherent, the CS theory indicates that the original
sparse coefficients can be well-recovered from the
compressive measurement y via minimum I —norm
reconstruction, This is known as solving a convex
optimization based on the £;—norm

6= argminllf’ll, suchthat €8 =y, (3)

where @ is the NX1 vector that satisfies 66 =y

and @ is the recovered K-sparse coefficients,

As presented above, sparse signals can Dbe
recovered from a few measurements; however, the CS
has to deal with both nearly sparse signals and noise,
Because signals are usually not  sparse  but
approximately sparse, any real data will be affected by
a small amount of noise, Cand s ef &/ introduced the
concept of RIP (Restricted Isometry Property) (7] and
used it to prove many theorems in the field ot CS, The
RIP makes the CS robust to nearly sparse signals, The
RIP definition states that for each integer K, the
isometry constant 6, of a matrix @ is defined as the

smallest number by which
(1—5)0l% < el < (1+5)l8l; (&)
holds for all A—sparse vectors 8, Here, |I.1l, is the £,

—norm of a vector, It is useful that K—sparse vectors
@ cannot be in the null space of @; otherwise, it cannot
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be reconstructed, Additionally, the problems of noise
effect are considered by the recovery algorithms, such
as a compinatorial optimization algorithm proposed by
Haupt and Nowak [8].

IV. Sparse Signals in the Time
Domain

This section focuses on the CS—based applications
for signals that are sparse in the time domain, That is,
a signal is a linear combination of the time—shifted
basis vectors,

1. CS~based AIC

While Paredes et a/ have proposed a compressed
sensing based AIC (Analog—to—Informaion Converter)
for UWB IR (Impulse Radio} [9], Meng ef a/ proposed an
AIC for 60 GHz UWB [10], Both approaches rely on the
fact that transmitting an ultra—short pulse through a
multipath channel leads to a received signal that can
be approximated by a linear combination of a few atoms
from a pre-defined dictionary, In other words, the

received signal is sparse,

For a general UWB multipath channel model, we
consider the typical tap—delay-line model described in
[11] and represent the CIR {Channel impulse Response)
h(t) as

ht)= iazé(t—n),

where L represents the number of resolvable paths, o,
denotes the gain of the £—path, and 7, is the time delay
of the £~path,

Without loss of generality, we consider a simple
communications model of transmitting a pulse w(t)
through the multipath channel h{t). The received UWB
signal () without noise or composite pulse—multipath
channel h,(t) can be modeled as

= k()= w(0) 4 A0 = Vawl=r). ©

Obviously, the received UWB signal r(t) is the form
of scaled and delayed versions of the pulse w(t) as
shown in {Fig. 1), Then, the sparsity basis ¥ can be
generated based on the following set,

D={d, W}, ={wlt-m-1)« )R-, 0

where an atom d,, (t) is a delayed version of a UWB
received pulse w(t) with time resolution A,

In this approach, CS—based AIC architecture can be
depicted as (Fig. 2). There are two main blocks: CS
measurement  {including random  projection and
low—rate ADC) and CS reconstruction, Since the

random projection can be performed in the analog

{Fig. 2) CS—based AIC for the signals sparse in time

(=1 domain
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{Fig. 1) A received UWB signal without noise in form of scaled and
delayed versions of a UWB pulse
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domain by using random filters [12] or by a PN (Pseudo
Noise) sequence generator plus integrator {10], the
received UWB signal feeding the random projection
block can be an analog signal, Next, the low—rate ADC
gsamples the randomly—projected signal at a
sub—Nyquist rate, In the CS reconstruction block, the
samples of the randomly—projected signal are assumed
to be processed by an efficient CS recovery algorithm,
The recovery algorithm outpuis a sparse coefficient
vector @ for regenerating the transmitted signal by
using (1),

As a result of applying the CS thecry, the sampling
rate is reduced significantly, In [8], since the authors
show that CS reconstructing operates with implicit
de—noising, the compressive rate M/ N is reduced to
0.24 without degrading the BER (Bit Error Rate)
performance, Meanwhile, the compressive rate can be
reduced to 0,04 in 60 GHz UWB systems, as seen in
[10].

2. Channel Estimation

In the previous sub-section, CS research only
focuses on reducing the sampling rate, However, CS
can be extended 1o a much broader range of statistical
inference tasks, and is particularly well-suited for
applications in  wireless communications such as
channel estimation [1314],

Let us consider the composite pulse~multipath
channel h,(t), given by (6). The number of multipath
components in the UWB channel may be large, but it
can be limited to estimate only L, most significant paths
that compose the UWB CIR Here, assume that the
composite—multipath  channel is
uwB and
reconstruction, as described in (Fig. 2). The output of

L, —sparse and

consider  the signal  measurement

the €S reconstruction block is the sparse coefficient
vector 8= [0,,--,8 y]7 which contains the multipath
gains, From this vector, we can determine the
estimated gain &z and the estimated delay }g of the £
~path of the muitipath CIR by locating the values and
indices of the non-zero elements of the 8.

Since path gains and delays of the channel h(t) are

estimated at the receiver, a CS rake receiver was
proposed for a noisy communication environment [13],
Furthermore, based on the sparse coetficient vector é,
we have extended to propose a ToA (Time of Arrival)
estimation scheme which finds the threshold between
noise and signal for detecting the first path arrival of a
received signat [15], It exploits the sampling reduction
of CS benefit and provides high accuracy performance,

3. Compressed Detection

Wang ef al recently proposed a GLRT (Generalized
Likelihood Radio Test) detector for IR UWB based onfy
on CS measurement [16,17]. The proposed receiver
does not require a high-rate ADC and complex
implementation for CS recovery algorithms,

Let us consider the IR UWB system where binary
information symbols are conveyed by a stream of
ultra—short puises w(t). In particular, V; antipodal
pulses w(t) are repeated to transmit one binary
symbol. The transmitted burst includes /N, pilot
symbols that are not modulated and N, antipoda
modulated symbols, Assume that the multipath CIR h(t)
is time—invariant during the duration of each stream of
bits, Then, the CS measurement for the pilot symbols is
expressed as

yp[n] =&z, + Pz,[n}, n=0,-,N,N;—1, (8

where =z, is the digitalized representation of the
noise—free received signal and z, [n] is the digitalized
representation of the noise within a projection interval,

Similarly, the j-th dala modulated symbol is

measured as

n=0,,N—1,

yy;lnl = bj.dixo + @zs[n},l) )

(j=0,,N,—

where b,& {— 1,41} is the binary data bit, and z, [n]
is noise vector within a data~symbol interval,

Assuming that the daia bits are sent with equal 2

oriori probability, there are two hypotheses for the
compressed detection of the j—th symbol b;:
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Hy: y,[n] ==&zt dz,[n], (b, =—1)
H,: y,n]=+&z,+d2,[n], (

To distinguish between the two hypotheses, the
likelihood ratio is given as

- Hy
df ly,:Pxy, H
likelihood(y,) = 2 Iy 2 ) S1,om
Pdf(?ls@waa) 1?1

where @z, is the estimation of @z, which is obtained

by the ML (Maximum Likelihood) estimation of &z, as

NN -1
-~ 1 N
&z, = 2 Yy [n] = &z, +&z, (12)

Npr n=0
R/
where z, = z,In].  After  some
TN WS T

manipulations, a test statistic is obtained as follows,

test(y,) = (Sz+02,) " (NBIS )" (b @2+ 87,)7 (13)

Although the compressed detection can provide
superior BER performance, it requires a large number
of measurements [16,17], Hence, Wang et a/ proposed
an improved compressive detection method called
Ssubspace compressive detection, which uses the
subspace measurement matrix tailored to the signal
structure to achieve fewer measurements as well as
better detection performance [17,18]. in this approach,

the subspace measurement matrix @ is proposed as

o= G, (0w 'wT (14)

Transmitaﬂ

where Gy s an M X N identically distributed random
matrix and the basis ¥ is assumed to be known, This
improvement leads o a simplified receiver design and
provides a competitive performance,

4, Pre—Filtering Applications Based on
CS

In the previous sub~sections, CS measurement and
CS reconstruction are both implemented in the
receivers, This leads to high circuitry complexity in the
receivers, To reduce the complexity on the receiver
side, P. Zhang et al [19]

pre—filtering CS—based UWB systems that can move the

have proposed the

complexity of CS measurement to the transmitters, The
authors proposed the following system architecture for
a pre—filtering CS—based UWB system in {Fig. 3). A
UWB signal is transmitted by feeding a sparse bit
sequence through a UWB pulse generator and a
pre—coding filter, After going through the channel, the
received signai is directly sampled using a low-rate
ADC and then processed by a recovery algorithm, The
measurement matrix @ is now a projecting matrix
consisting of the pre-coding FIR (Finite Impulse
Response) filter and the CIR, That is, the channel itself
is a part of the measurement matrix in the CS
measurement phase,

Let us consider K—PPM (Pulse Position modulation)
scheme which is used to modulate the sparse bit
sequence, Each PPM symbol is said o be A-sparse
signal, because there are /N positions and only K
pulses in each symbol. The output of the UWB pulse
generator can be written as

N-1
z(t) = ZQndn(t) or ¢ =U8, (15)
n =0

[Receiver

.| Low-rate
; ADC

9 L 4 b v

{Fig, 3) A pre—filtering CS-based system
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where dn(t)rw(t—nTp) with w(t) as the UWB
pulse and Tp as the UWB pulse duration, and
D=[dy(t),-,dy_,(t)]. Note that this application
focuses on exploiting the sparsity of the transmitted
signal and not the sparsity of the multipath CIR, We can
model the pre—coding filter and channel as a FIR filter
F(t) by combining the FIR fitter f(t) of the pre~coding
filter and the multipath CIR h(t) as

F(t)= f(t)x h(t). (16)

Then the received signal y(t)= F(t) x z(t) is
down sampled by a low rate ADC and formulated as

y= B0, (17)

where the measurement matrix @ is the algebraic
representation of the FIR filter F(t). Now, the
communication problem becomes a CS problem as in
(2). Then, the measurements y is processed as usual
to get the estimated coefficient vector 9,

However, the multipath CIR h(t) must be known a
priori at the receiver in this system, Thus, it requires a
scheme that allows this system to estimate h(t) without
adding any circuitry complexity. The authors and H, Yu
et al both proposed similar approaches for estimating
the channel in the pre—filtering system as in (Fig, 4)
[14,19], Similarly to the channel estimation scheme in
subsection lIl.2, by transmitling the probing UWB pulse
and basing on the sparsity of the multipath CIR h(¢),
we can estimate the path gains ¢, and the path delays
T,, Which are two important parameters of the CIR
h(t). Thatis, it takes the CS measurement on h(t) by
using the probing pulse and the precoding filter
w(t) % f(t). Then the CS problem is formulated as

Yy = wi(t) k f() % }1/(7‘«)29292 (18)

Transmi@

[—R—e-ceiver

(Fig. 4) A block diagram of channel estimation

where 6, is the matrix derived from w{t) % f(¢) and
#, is the vector whose elements are the path gains «,

of the multipath CIR h(t). The channel estimation
problem then becomes the CS reconstruction problem
which can be solved by a CS recovery algorithm,

5. CS~based bursty Communications

Oka et al proposed a compressed sensing receiver
for IR UWB communication in WSNs (Wireless Sensor
Networks) that are characterized by bursty transmission
and power constraints [20]. This fiexible and robust
receiver performs a joint decoding of timing and
amplitude information, The proposed receiver bypasses
the requirement of high-rate ADC, Instead, it uses an
analog front-end consisting ¢of a bank of correlators
with test functions, a low-rate ADC, and a DSP
back—end based on a computationally efficient QP
{Quadratic Program). The architecture of the CS—based
bursty receiver is depicted in {Fig. 5).

After going through the bandpass—filter g(t) with
center frequency f, and bandwidth 2, the received

signal R{t) is formulated as
K—1
R(t)=Y] By (t — kThpuna — v) + W(t)  (19)
k=0

where the bit B is an element of the burst with /V bits
B h,,,,(t) is the total impulse response which is the
convolution of the transmitted pulse w(t), the channel
h(t), and the low-pass filter response g{t), Thouna 1S
the interval between two consecutive bits, v is the ToA
of the received signal with the maximum value assumed

to be v and W{t) is the band—limited zero—mean

max:»

additive Gaussian noise. R(t) is then fed into a bank
of M parallel analog correlators, followed by M
integrators, The ensemble of test functions is denoted

by {¢m (t) M

m=1"

The ensemble of test functions can

be simply the set of square waves with frequencies
selected deterministically and uniformly from the signal
band [f,— £2/2,f.+ 2/2], which is seen to perform

as well as the PN ensemble, Then we can wrile the

2011 18] BXFUX] H3eW HLL

6l



62

62

Dsp
bagck-end

N7 =

(Fig. 5) CS~based receiver for bursty communications

measurement in matrix form as follows,

y=PR=GHX+PW, (20)

where @ is the MX N matrix represented for the

. and the

ensemble of test functions {¢,, (t),};’f _
NXA, matrix H is represented for the total CIR
Ryoar(8). In addition, the NX 1 vector R, the A, X1
vector X, and the VX1 vector W are the algebraic
representations of the received signal R(t), the burst
of bits B, and the bandlimited noise, respectively,
The ML demodulation of B based on the
measurement of (20), can be described for solving £,

—minimization problem as

Xx= arg)xrnin( Y-9HX) (9CG08) (Y-8HX) (71

where @ is the matrix representation of the filter
impulse response and X is a potential solution, Instead
of solving the complex ML problem of {21), the authors
considered the relaxation of the ML demodulation
problem {21) as

Xln] = Zln] - Zin+ N
Z =min f7z+ -;-zTQz . {22
suchthat z> 0, [£(a,l, £,),€(a,1,2,)]2 = K

where

H8T(06GT0 ) 'oH -H3T(e6G 0T o
—HT3T(oGG7dT) o0 H'oT( 0GR T) '0H

, FFlyT(0GETe Ty o H, yT(6GCTH ) 6 H,

_[1.0,nE la+£,,a+1,)]
¢latyby)ln} = {U, otherwise

o]
with U is a large

YT J1ere] PUFU AlAH

number, and Z= [max (X;0),abs (min(X;0))]. There are
several efficient large—scale methods to solve the QP
problem [21] so that it reduces the compiexity of solving
the original problem {21),

The QP demodulation is then performed in two
stages, In the first stage, the QP problem (22) is solved
by inputting £(a=0,¢, =0,4, =I') corresponding to the
full ToA uncertainty I'= v, f, with f, as the virtual

Nyquist sampling frequency, The result of this stage fl

is used to estimate the ToA v, Denote v is the

quantized version of v, that is, 7= round(vf,). Thus,

§ maximizes the correlation of the delay version of )?1
and the template £(0,0,0)

7 =argmax Y&l —nlle(0,0,0)ln]  (a3)

The second stage solves the QP problem again by
using &(a= 7,6, =0,£, =0) to obtain the solution X;. A
simple rule was proposed to demodulate the information
bits B,

B=sign(X, 3+ kN 1), k=0, K—1. (24)

The authors presented an innovative compressed
sensing receiver with the ability to detect a burst of bits,
while other compressed detection schemes only detect
each bit or symbol for each process of reconstructing
signals by CS recovery algorithms, Moreover, it can
estimate the ToA of a received signal with high
reduce the

accuracy and complexity of CS

reconstruction receivers due 1o

relaxing the CS problem to the QP problem which can

implementation in



be solved by some efficient algorithms, However, the
authors assumed that the CIR h(t) is known in the
receiver; although it can be estimated by some channel
estimation schemes, the inaccuracy of the estimated
channel h(t) may degrade the BER performance.

V. Sparse Signals in the Frequency
Domain

1, CS—based AIC

In many applications, signals are sparse in the
frequency domain, That is, the number of significant
frequency components is often much smaller than the
bandlimit allows, So, this sparsity can be exploited to
design a CS—based AIC for reducing high sampling rate
[22-24],

Kirolos ef al proposed a type of sampling system
called a random demodulator [22] that can be used to
acquire signals, The block diagram for the random
demodutator is illustrated in (Fig. 6.

As seen in (Fig. 6), there are three main blocks:
demodulation, filtering and uniform sampling, The signal
is first modulated by a high—rate PN sequence of £1,
called the chipping sequence p,(t). The purpose of
the demodulation is 1o spread the frequency content of
the signal into the entire spectrum so that it leaves a
signature that can be detected by a low-rate ADC, To
understand the details of how the random demodulator
works, we can study its properties by using fools from
matrix analysis and functional analysis [23].

Assume that the signal z(t) is bandlimted, periodic
and K-sparse in frequency domain, Consider the
following mathematical model for sparse signal in the

Low-rate
ADC

p.(t

{Fig, 6) A block diagram of the random
demodulator

frequency domain,

f (t) = Z a,e it for tE [0’1>, (25)

wE 2

where §2 is a set of K integer—valued frequencies with
Rc {[),:&: L+2,t (W /2— 1),wmx/2},
Moreover, w,,,./2 is a positive integer that exceeds

the highest frequency of the continuous—time signal =,
and a, is a complex—valued amplitude, Note that we

are only interested in the case of K < wy, /2. Let us

define the discrete representation of input signal s in
the frequency domain as follows,

f=Fs, (26)

where F is w,,,, Xw,,, bermuted DFT (Discrete
Fourier Transform) matrix,

Let €g,--,€,, 1 be the PN chipping sequence.
The modulation of signal by PN chipping sequence is

now the map
f—D.f, (27)

€5 0

€
where D= ! ) . Next, considering the
0 €4

action of the low—pass filter and the sampler, assume

1

max

that the sampling rate is f, and each sample is the

wmax/fs

demodulated signal, Thus, we consider a matrix H in

sum  of consecutive eniries of the

which each row has f, Xwg,, consecutive unit

elements as the following example:

To the end, the action of random demodulator is
formulated as

y= HD Fs= PFs, (29)
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where @ is considered as the measurement matrix in
the CS theory. The measurement matrix has the RIP
[23] so that the samples contain enough information to
approximate general signals extremely well by CS
recovery algorithms,

2. Interference Cancellation

There are two types of classical interference

cancellations:  analog cancellation and  digital
cancellation, Analog cancellation "assumes that the
interfering signal has enough known parameters that it
can be identified and removed in the analog domain
before signal acquisition, It is implied that the
interference content is not interesting to the acquisition
system or its user and can be safely discarded, Digital
that the

bandlimited and follows a similar approach after

cancellation  assumes interference  is
sampling the signal at the Nyquist rate dictated by the
combined bandwidth of the signal of interest and the
interference, The compressive measurement acquired
by CS-based systems usually includes undesired
interterence, Since CS—-based signal acquisition and
processing has been shown to be more susceptible to
noise and interference than classical methods [25], it
seems prudent to eliminate as much noise and
interference as possible prior to processing,
Davenport ef al have developed an efficient
[26] that

eliminates signal interference, while preserving the RIP

compressive  domain filtering  algorithm
for the set of signals of interest, Thus, the projected
measurements retain sufficient information to enable the
direct recovery of this signal of interest, or alternatively
to enable the use of efficient compressive domain
algorithms for further processing,
Suppose that signal z€RY consists of two
components:
=T + 3:1, (30)
where z, represents the signal of interest and z;

represents interference, The measurements of both
components are acquired simultaneously as

USHY Tghe] RHF AAH

y=b(z,+z;) (31)

The goal is to remove the coniribution of interference
z; to the measurement y, while preserving the

information on . Assume that the sparsily basis ¥ is
the same both for z, and z;, Without loss of generality,
assume that this sparsity basis is the canonical
(identity) basis and , belongs to a K-dimensional
subspace of R™ having basis {ej} e, where e;
denotes the vector of all zeros with & 1 in the j-th
position and J dencies a set of indices, Note that if &,

denotes the matrix consisting of the columns of @
indexed by set J, then &z, lies in R(®,). To cancel

the interference signals, we need to construct a linear
operator P that operates on the measurements ¢ and
maps R(®;) to zero: i.e, the null space of P should

be equal to R(® J)_ There are a variety of methods for

constructing P, However, to ease the computational
cost of applying P, the authors have constructed P as
follows,

P=1-9¢8 (32)
where &) = (45;45 J)_ 1@; is the pseudoinverse, Note

that since @z, R(P,), there exists a vector

ozERK1 such that

Pdx; = PP o

= (I- ¢J(¢T]¢J)“ 1¢})@ﬂ .
=@ 0—P,a=0

(33)

Thus P eliminates the interference x; from the samples y.

From (30) and (33), Py= P®(z,+ =z, = Pdz,.
The authors have already proved that the matrix PP
satisties a relaxed version of RIP. This means that
Pdz, contains sufficient information about &, and can
be reconstructed efficiently by CS recovery algorithms,
Davenport ef al also proposed three methods of
interference cancelations, namely cancel~then—recover,
modified recovery and recovery—then—cancel, Their
simulation results showed that the cancel-then—



recover method performed significantly better than both
of the other methods,

Davenport ef al proposed a simple and efficient
approach, however they require the assumption of
known basis {e;}._ , of the interference signal. Al this

point, it may not be practical due to the diversity of
interference sources, While Wang ef a/ were interested
in NBI (Narrowband Interference) mitigation [27], they
proposed a method that estimates NBI subspace and
cancels the most significant NBl components,

VI. Discussion and Conclusion

In this article, we presented a survey on CS—based
applications in wireless communications, The CS-—
based applications can be broken down into two types:
CS~applications for signals sparse in the time domain
and CS-—applications for signals sparse in the
frequency domain, The survey is based on some
recently typical research of applying CS into wireless
communication: AIC implementation, channel estimation,
compressed detection, pre-filtering filter, bursty
communications, and interference mitigation,

Even though CS—based applications already showed
promising results, researchers are still dealing with the
following challenges: How to  model signals
well-represented by K vectors of the basis ¥, how to
minimize the number of CS measuremenis M, and how
to efficiently reconstruct signals, For signals sparse in
the time domain, they can be modeled as the scaled
and delayed versions of the signal waveform but it is
stilt challenging for signals sparse in the frequency
domain, This means it requires the prior—known basis
¥ or some other technigue to estimate the basis ¥,
There is a trade—off between the number of CS
measurements and the accuracy of reconstructing
sparse signals, lf the number of CS measurements
increases, the accuracy of reconstructed signal will be
improved and vice versa, Additionally, increasing the
number of CS measurements leads to high complexity
of implementing the CS measurements and CS recovery

algorithms, Therefore, it should be improved by using

some technologies such as subspace measurement
matrix in [17,18,27].

Tre CS
communications and still challenging to researchers,

theory is promising in  wireless

Thus, a lot of theory and applications of CS will be

proposed for CS—based applications in  wireless

communications,
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