Noninformative priors for stress-strength reliability in the Pareto distributions

  • Kang, Sang-Gil (Department of Computer and Data Information, Sangji University) ;
  • Kim, Dal-Ho (Department of Statistics, Kyungpook National University) ;
  • Lee, Woo-Dong (Department of Asset Management, Daegu Haany University)
  • Received : 2010.12.10
  • Accepted : 2011.01.12
  • Published : 2011.01.31

Abstract

In this paper, we develop the noninformative priors for stress-strength reliability from the Pareto distributions. We develop the matching priors and the reference priors. It turns out that the second order matching prior does not match the alternative coverage probabilities, and is not a highest posterior density matching or a cumelative distribution function matching priors. Also we reveal that the one-at-a-time reference prior and Jeffreys' prior are the second order matching prior. We show that the proposed reference prior matches the target coverage probabilities in a frequentist sense through simulation study, and an example is given.

Keywords

References

  1. Arnold, B. C. and Press, S. J. (1983). Bayesian inference for Pareto populations. Journal of Econometrics, 21, 287-306. https://doi.org/10.1016/0304-4076(83)90047-7
  2. Arnold, B. C. and Press, S. J. (1989). Bayesian estimation and prediction for Pareto data. Journal of the American Statistical Association, 84, 1079-1084. https://doi.org/10.1080/01621459.1989.10478875
  3. Berger, J. O. and Bernardo, J. M. (1989). Estimating a Product of Means : Bayesian analysis with reference priors. Journal of the American Statistical Association, 84, 200-207. https://doi.org/10.1080/01621459.1989.10478756
  4. Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion). Bayesian Statistics IV, J. M. Bernardo, et al., Oxford University Press, Oxford, 35-60.
  5. Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference (with discussion). Journal of Royal Statistical Society, B, 41, 113-147.
  6. Cox, D. R. and Reid, N. (1987). Orthogonal parameters and approximate conditional inference (with discussion). Journal of Royal Statistical Society, B, 49, 1-39.
  7. Datta, G. S. and Ghosh, J. K. (1995a). On priors providing frequentist validity for Bayesian inference. Biometrika, 82, 37-45. https://doi.org/10.1093/biomet/82.1.37
  8. Datta, G. S. and Ghosh, M. (1995b). Some remarks on noninformative priors. Journal of the American Statistical Association, 90, 1357-1363. https://doi.org/10.1080/01621459.1995.10476640
  9. Datta, G. S. and Ghosh, M. (1996). On the invariance of noninformative priors. The Annal of Statistics, 24, 141-159. https://doi.org/10.1214/aos/1033066203
  10. Datta, G. S., Ghosh, M. and Mukerjee, R. (2000). Some new results on probability matching priors. Calcutta Statistical Association Bulletin, 50, 179-192. https://doi.org/10.1177/0008068320000306
  11. DiCiccio, T. J. and Stern, S. E. (1994). Frequentist and Bayesian Bartlett correction of test statistics based on adjusted profile likelihood. Journal of Royal Statistical Society, B, 56, 397-408.
  12. Fernandez, A. J. (2008). Highest posterior density estimation form multiply censored Pareto data. Statistical Papers, 49, 333-341.
  13. Geisser, S. (1984). Prediction Pareto and exponential observables. Canadian Journal of Statistics, 12, 143-152. https://doi.org/10.2307/3315178
  14. Geisser, S. (1985). Interval prediction for Pareto and exponential observables. Journal of Econometrics, 29, 173-185. https://doi.org/10.1016/0304-4076(85)90038-7
  15. Ghosh, J. K. and Mukerjee, R. (1992). Noninformative priors (with discussion). Bayesian Statistics IV, J. M. Bernardo, et al., Oxford University Press, Oxford, 195-210.
  16. Ghosh, J. K. and Mukerjee, R. (1995). Frequentist validity of highest posterior density regions in the presence of nuisance parameters. Statistics & Decisions, 13, 131-139.
  17. Kang, S. G. (2010). Noninformative priors for the common scale parameter in Pareto distribution. Journal of the Korean Data & Information Science Society, 21, 335-343.
  18. Kim, D. H., Kang, S. G. and Lee, W. D. (2009). Noninformative priors for Pareto distribution. Journal of the Korean Data & Information Science Society, 20, 1213-1223.
  19. Ko, J .H. and Kim, Y. H. (1999). Bayesian prediction inference for censored Pareto model. Journal of the Korean Data & Information Science Society, 10, 147-154.
  20. Lee J. and Lee, W. D. (2008). Likelihood based inference for the shape parameter of Pareto distribution. Journal of the Korean Data & Information Science Society, 19, 1173-1181.
  21. Lwin, T. (1972). Estimation of the tail of the Paretian law. Scandinavian Actuarial Journal, 55, 170-178.
  22. Mukerjee, R. and Dey, D. K. (1993). Frequentist validity of posterior quantiles in the presence of a nuisance parameter : higher order asymptotics. Biometrika, 80, 499-505. https://doi.org/10.1093/biomet/80.3.499
  23. Mukerjee, R. and Ghosh, M. (1997). Second order probability matching priors. Biometrika, 84, 970-975. https://doi.org/10.1093/biomet/84.4.970
  24. Mukerjee, R. and Reid, N. (1999). On a property of probability matching priors: matching the alternative coverage probabilities. Biometrika, 86, 333-340. https://doi.org/10.1093/biomet/86.2.333
  25. Nigm, A. M. and Hamdy, H. L. (1987). Bayesian prediction bounds for the Pareto lifetime model. Communications in Statistics: Theory and Methods, 16, 1761-1772. https://doi.org/10.1080/03610928708829470
  26. Rezaei, S., Tahmasbi, R. and Mahmoodi, M. (2010). Estimation of P[X < Y] for generalized Pareto distribution. Journal of Statistical Planning and Inference, 140, 480-494. https://doi.org/10.1016/j.jspi.2009.07.024
  27. Stein, C. (1985). On the coverage probability of confidence sets based on a prior distribution. Sequential Methods in Statistics, Banach Center Publications, 16, 485-514.
  28. Tibshirani, R. (1989). Noninformative priors for one parameter of many. Biometrika, 76, 604-608. https://doi.org/10.1093/biomet/76.3.604
  29. Tiwari, R. C., Yang, Y. and Zalkikar, J. N. (1996). Bayes estimation for the Pareto failure-model using gibbs sampling. IEEE Transactions on Reliability, 45, 471-476. https://doi.org/10.1109/24.537018
  30. Welch, B. L. and Peers, H. W. (1963). On formulae for con dence points based on integrals of weighted likelihood. Journal of Royal Statistical Society, B, 25, 318-329.