DOI QR코드

DOI QR Code

Estimation of structure system input force using the inverse fuzzy estimator

  • Lee, Ming-Hui (Department of Civil Engineering, Chinese Military Academy)
  • Received : 2009.11.11
  • Accepted : 2010.10.20
  • Published : 2011.02.25

Abstract

This study proposes an inverse estimation method for the input forces of a fixed beam structural system. The estimator includes the fuzzy Kalman Filter (FKF) technology and the fuzzy weighted recursive least square method (FWRLSM). In the estimation method, the effective estimator are accelerated and weighted by the fuzzy accelerating and weighting factors proposed based on the fuzzy logic inference system. By directly synthesizing the robust filter technology with the estimator, this study presents an efficient robust forgetting zone, which is capable of providing a reasonable trade-off between the tracking capability and the flexibility against noises. The period input of the fixed beam structure system can be effectively estimated by using this method to promote the reliability of the dynamic performance analysis. The simulation results are compared by alternating between the constant and adaptive and fuzzy weighting factors. The results demonstrate that the application of the presented method to the fixed beam structure system is successful.

Keywords

Acknowledgement

Supported by : National Science Council of the Republic of China

References

  1. Chen, T.C. and Lee, M.H. (2008), "Inverse active wind load inputs estimation of the multilayer shearing stress structure", Wind Struct., 11(1), 19-33. https://doi.org/10.12989/was.2008.11.1.019
  2. Chen, T.C. and Lee, M.H. (2008), "Research on moving force estimation of the bridge structure using the adaptive input estimation method", Electron. J. Struct. Eng., 8, 20-28.
  3. Chen, T.C. and Lee, M.H. (2007), "Intelligent fuzzy weighted input estimation method for solving gun barrel thermal stress problem", J. Explos. Propel., R.O.C., 23(2), 49-68.
  4. Doyle, J.F. (1997), "A wavelet deconvolution method for impact force identification", Exp. Mech., 37(4), 403- 408. https://doi.org/10.1007/BF02317305
  5. Fabunimi, J.A. (1986), "Effects of structural modes on vibratory force determination by the pseudoinverse technique", AIAA J., 24(3), 504-509. https://doi.org/10.2514/3.9297
  6. Huang, C.H. (2001), "An inverse nonlinear force vibration problem of estimating the external forces in a damped system with time-dependent system parameters", J. Sound Vib., 242(5), 749-765. https://doi.org/10.1006/jsvi.2000.3196
  7. Inoue, H., Harrigan, J.J. and Reid, S.R. (2001), "Review of inverse analysis for indirect measurement of impact force", Appl. Mech. Rev., 54(6), 503-524. https://doi.org/10.1115/1.1420194
  8. Inoue, H., Ikeda, N., Kishimto, K., Shibuya, T. and Koizumi, T. (1995), "Inverse analysis of the magnitude and direction of impact force", JSME Int. J., Series A, 38(1), 84-91.
  9. Lee, M.H. and Chen, T.C. (2008), "Blast load input estimation of the medium girder bridge using inverse method", Defence Sci. J., 58(1), 46-56. https://doi.org/10.14429/dsj.58.1622
  10. Lee, M.H. and Chen, T.C. (2010), "Intelligent fuzzy weighted input estimation method for the input force on the plate structure", Struct. Eng. Mech., 34(1), 1-14. https://doi.org/10.12989/sem.2010.34.1.001
  11. Michaels, J.E. and Pao, Y.H. (1985), "The inverse source problem for an oblique force on an elastic plate", J. Acoust. Soc. Am., 77(6), 2005-2010. https://doi.org/10.1121/1.391772
  12. Martin, M.T. and Doyle, J.F. (1996), "Impact force identification from wave propagation responses", Int. J. Impact Eng., 18(1), 65-77. https://doi.org/10.1016/0734-743X(95)00022-4
  13. Ma, C.K., Tuan, P.C., Lin, D.C. and Liu, C.S. (1998), "A study of an inverse method for the estimation of impulsive loads", Int. J. Syst. Sci., 29(6), 663-672. https://doi.org/10.1080/00207729808929559
  14. Ma, C.K., Chang, J.M. and Lin, D.C. (2003), "Input forces estimation of beam structures by an inverse method", J. Sound Vib., 259(2), 387-407. https://doi.org/10.1006/jsvi.2002.5334
  15. Mario, P. (1986), Dynamics of Structures, Hsiao-Yuan Publication Company Limited.
  16. Tuan, P.C., Fong, L.W. and Huang, W.T. (1996), "Analysis of on-line inverse heat conduction problems", J. Chung Cheng Institute Technol., 25(1), 59-73.
  17. Tuan, P.C., Lee, S.C. and Hou, W.T. (1997), "An efficient on-line thermal input estimation method using Kalman filter and recursive least square algorithm", Inverse Prob. Eng., 5(4), 309-333. https://doi.org/10.1080/174159797088027665
  18. Tuan, P.C. and Hou, W.T. (1998), "Adaptive robust weighting input estimation method for the 1-D inverse heat conduction problem", Numer. Heat Tr., 34(4), 439-456. https://doi.org/10.1080/10407799808915067
  19. Wang, L.X. (1994), Adaptive Fuzzy Systems and Control: Design and Stability Analysis, Prentice-Hall, Englewood Cliffs, NJ.
  20. Yang, Y.B. and Yau, J.D. (1997), "Vehicle-bridge interaction element for dynamic analysis", J. Struct. Eng- ASCE, 123(4), 1512-1518. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:11(1512)

Cited by

  1. Beam-rotating machinery system active vibration control using a fuzzy input estimation method and LQG control technique combination vol.10, pp.1, 2012, https://doi.org/10.12989/sss.2012.10.1.015
  2. Reliability analysis of repairable k-out-n system from time response under several times stochastic shocks vol.14, pp.4, 2014, https://doi.org/10.12989/sss.2014.14.4.559
  3. Application of the ANFIS model in deflection prediction of concrete deep beam vol.45, pp.3, 2013, https://doi.org/10.12989/sem.2013.45.3.323