DOI QR코드

DOI QR Code

Mechanical Analysis of Hexagonal Porous Body for Porous Dental Implant

다공질 치과용 임플란트 설계를 위한 육각가공체의 역학 분석

  • Kim, Nam-Sic (Department of Dental Laboratory Technology, Masan University)
  • Received : 2011.10.31
  • Accepted : 2011.12.28
  • Published : 2011.12.30

Abstract

Purpose: The purpose of this study is a porous cube mechanical analysis for the dental implant. Methods: The porous cube with a side length of 10mm was designed for dental implant. To choose proper design, porous hexagon with a side 10mm which was drilled as a regular hexagon with diameter 0.8mm, 1.0mm, 1.2mm and a side 0.4mm, 0.5mm, 0.6mm each using Computer AUTO CAD(Autodesk, 2008). Each cube was carried out in the mechanical analysis. Results: The result of mechanical analysis was observed that the H0.8 was minimum stress 0.045068MPa, maximum stress 9.4565MPa and minimum strain $0.00389{\times}10^{-4}Mpa$, maximum strain $0.816{\times}10^{-4}Mpa$, the H1.0 minimum stress 0.001147MPa, maximum stress 9.099MPa and minimum strain $0.000099{\times}10^{-4}Mpa$, the maximum strain $0.784{\times}10^{-4}Mpa$, the H1.2 minimum stress 0.099393MPa, maximum stress 13.137MPa and minimum strain $0.0112{\times}10^{-4}Mpa$, maximum strain $1.13{\times}10^{-4}Mpa$. Conclusion: The mechanical analysis of porous hexahedron was that H1.0 is the best result. It will be applicable to the porous implants.

Keywords

References

  1. 김남식. 유한요소 분석을 이용한 다공성 치과용 임플란트의 설계. 부산가톨릭대학교 생명과학대학원, 이학 석사 학위논문, 2010.
  2. 이명곤. 골유착 치과 임플랜트 고정체 직경에 따른 지지 골 응력 분포에 관한 삼차원 유한요소 분석적 연구, 대한치과기공학회지, 26(1), 2004.
  3. 최귀현. 임플란트의 표면조도가 공융합에 미치는 영향. 경희대학교 대학원, 치의학석사학위논문, 2003.
  4. 황하준. 임플란트 표면처리에 따른 골융합의 차이. 경희 대학교 대학원 치의학과, 치의학석사학위논문, 2003.
  5. Buser D, Warrer K, Karring T, Stich H. Titanium implants with a true period- ontal ligament; An alternative to osseointegrated implants. Int J Oral Maxillofac Implants, 5, 113-116, 1990.
  6. Denissen, HW, Kalk W, Nieuport HM, Maltha JC, Hoofe A. Mandibular bon response to plasma sprayed coatings of hydroxapatite. Int J Prosthodnt, 3, 55-58, 1990.
  7. Gottlander M, Albrektsson T. A Histomorphometric study of unthreaded hydroxyapatite coated and titanium coated implants in rabbit bone. Int J Oral Maxillofac Implants, 7, 485-490, 1992
  8. Gottlander M, Albrektsson T. A Histomorphometric studies of hydroxyapatite coated and uncoated CP titanium threaded implants in bone. Int J Oral Maxillofac Implants, 6, 399- 404, 1991.
  9. Hobo S, Ichida E, Garcia LT. Osseointergration and Occlusal Rehabilitation. Quintessence Co. 21- 32, 1989.
  10. Li JP, Wijn JR, Blitterswijk CA, Groot K. Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: Preparation and in vitro experiment. Biomaterials, 27, 1223-1235, 2006. https://doi.org/10.1016/j.biomaterials.2005.08.033
  11. Oonishi H. Yamamoto M, Ishimura H. Tsuji E, Kushitani S, Aono M, Ukon Y. The Effect of Hydroxyapatite coating on Bone Growth into porous titanium alloy implants. J Bone Joint Surg, 71-B, 213-216, 1989.
  12. Traini T, Mangano C, Sammons RL, Mangano F, Macchi A, Piattelli A. Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dental Materials, 24, 1525-1533, 2008. https://doi.org/10.1016/j.dental.2008.03.029
  13. Wen CE, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Asahina T. Processing of biocompatible porous Ti and Mg. Scripta Materialia, 45, 1147-1153, 2001. https://doi.org/10.1016/S1359-6462(01)01132-0
  14. Xiang Li, Chengtao W, Wenguang Z, Yuanchao Li. Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process. Materials Letters, 63, 403-405, 2009. https://doi.org/10.1016/j.matlet.2008.10.065