DOI QR코드

DOI QR Code

Modulation of LPS-Stimulated Astroglial Activation by Ginseng Total Saponins

  • Kim, Sok-Ho (Department of Laboratory Animal Medicine, Chonbuk National University College of Veterinary Medicine) ;
  • Shim, Se-Hwan (Department of Laboratory Animal Medicine, Chonbuk National University College of Veterinary Medicine) ;
  • Choi, Dea-Seung (Department of Laboratory Animal Medicine, Chonbuk National University College of Veterinary Medicine) ;
  • Kim, Jong-Hoon (Department of Veterinary Physiology, Chonbuk National University College of Veterinary Medicine) ;
  • Kwon, Young-Bae (Department of Pharmacology, Chonbuk National University School of Medicine) ;
  • Kwon, Jung-Kee (Department of Laboratory Animal Medicine, Chonbuk National University College of Veterinary Medicine)
  • Received : 2010.10.19
  • Accepted : 2011.01.07
  • Published : 2011.03.29

Abstract

Ginseng, a traditional medicine in Asian countries, is known to prevent various neuropathologic diseases such as Alzheimer's. Ginseng total saponins (GTS) in particular are one of the most effective ginseng extract compounds for neuroprotection. However, their protective effects on astrocytes are rarely reported. In pathological circumstances, astroglial activation plays a pivotal role in neuroinflammation. Subsequently, neuroinflammation induced by activated astrocytes causes brain damage. The purpose of the present study was to determine the suppressive effects of GTS on astroglial activation in lipopolysaccharide (LPS)-stimulated rat primary astrocytes. Astrocytes treated for 24 h with LPS demonstrated suppressed glialfibrillary acidic protein expression in a dose-dependent manner in the presence of GTS. GTS reduced production of proinflammatory cytokines such as tumor necrosis factor-${\alpha}$ and interleukin-1${\beta}$ and inhibited the level of inducible nitric oxide synthase, and cyclooxygenase-2 in LPS-stimulated astrocytes. Furthermore, GTS suppressed intracellular reactive oxygen species production. These modulations due to GTS may indicate neuroprotective antiinfl ammatory properties which may in turn be related to improvements in neurological performance.

Keywords

References

  1. Markiewicz I, Lukomska B. The role of astrocytes in the physiology and pathology of the central nervous system. Acta Neurobiol Exp (Wars) 2006;66:343-358.
  2. Cerciat M, Unkila M, Garcia-Segura LM, Arevalo MA. Selective estrogen receptor modulators decrease the production of interleukin-6 and interferon-gamma-inducible protein-10 by astrocytes exposed to inflammatory challenge in vitro. Glia 2010;58:93-102. https://doi.org/10.1002/glia.20904
  3. Ridet JL, Malhotra SK, Privat A, Gage FH. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 1997;20:570-577. https://doi.org/10.1016/S0166-2236(97)01139-9
  4. Liu MH, Lin YS, Sheu SY, Sun JS. Anti-infl ammatory effects of daidzein on primary astroglial cell culture. Nutr Neurosci 2009;12:123-134. https://doi.org/10.1179/147683009X423274
  5. Tang W, Eisenbrand G. Chinese drugs of plant origin: chemistry, pharmacology, and use in traditional and modern medicine. Berlin: Springer-Verlag, 1992.
  6. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58:1685-1693. https://doi.org/10.1016/S0006-2952(99)00212-9
  7. Shah ZA, Gilani RA, Sharma P, Vohora SB. Cerebroprotective effect of Korean ginseng tea against global and focal models of ischemia in rats. J Ethnopharmacol 2005;101:299-307. https://doi.org/10.1016/j.jep.2005.05.002
  8. Wang LC, Wang B, Ng SY, Lee TF. Effects of ginseng saponins on beta-amyloid-induced amnesia in rats. J Ethnopharmacol 2006;103:103-108. https://doi.org/10.1016/j.jep.2005.07.010
  9. Seong YH, Shin CS, Kim HS, Baba A. Inhibitory effect of ginseng total saponins on glutamate-induced swelling of cultured astrocytes. Biol Pharm Bull 1995;18:1776-1778. https://doi.org/10.1248/bpb.18.1776
  10. Kitts DD, Wijewickreme AN, Hu C. Antioxidant properties of a North American ginseng extract. Mol Cell Biochem 2000;203:1-10. https://doi.org/10.1023/A:1007078414639
  11. McCarthy KD, de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 1980;85:890-902. https://doi.org/10.1083/jcb.85.3.890
  12. Namba T, Yoshizaki M, Tominori T, Kobashi K, Mitsui K. Hase J. Fundamental studies on the evaluation of the crude drugs (I). Planta Med 1974;25:28-38. https://doi.org/10.1055/s-0028-1097909
  13. Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 2007;54:34-66. https://doi.org/10.1016/j.brainresrev.2006.11.003
  14. Choi C, Park JY, Lee J, Lim JH, Shin EC, Ahn YS, Kim CH, Kim SJ, Kim JD, Choi IS, et al. Fas ligand and Fas are expressed constitutively in human astrocytes and the expression increases with IL-1, IL-6, TNF-alpha, or IFN-gamma. J Immunol 1999;162:1889-1895.
  15. Lu X, Ma L, Ruan L, Kong Y, Mou H, Zhang Z, Wang Z, Wang JM, Le Y. Resveratrol differentially modulates inflammatory responses of microglia and astrocytes. J Neuroinfl ammation 2010;7:46. https://doi.org/10.1186/1742-2094-7-46
  16. Lian XY, Zhang Z, Stringer JL. Protective effects of ginseng components in a rodent model of neurodegeneration. Ann Neurol 2005;57:642-648. https://doi.org/10.1002/ana.20450
  17. Choi Y, Park SK, Kim HM, Kang JS, Yoon YD, Han SB, Han JW, Yang JS, Han G. Histone deacetylase inhibitor KBH-A42 inhibits cytokine production in RAW 264.7 macrophage cells and in vivo endotoxemia model. Exp Mol Med 2008;40:574-581. https://doi.org/10.3858/emm.2008.40.5.574
  18. Yu Z, Zhang W, Kone BC. Histone deacetylases augment cytokine induction of the iNOS gene. J Am Soc Nephrol 2002;13:2009-2017. https://doi.org/10.1097/01.ASN.0000024253.59665.F1
  19. Chabane N, Zayed N, Afi f H, Mfuna-Endam L, Benderdour M, Boileau C, Martel-Pelletier J, Pelletier JP, Duval N, Fahmi H. Histone deacetylase inhibitors suppress interleukin-1beta-induced nitric oxide and prostaglandin E2 production in human chondrocytes. Osteoarthritis Cartilage 2008;16:1267-1274. https://doi.org/10.1016/j.joca.2008.03.009
  20. Lockhart BP, Cressey KC, Lepagnol JM. Suppression of nitric oxide formation by tyrosine kinase inhibitors in murine N9 microglia. Br J Pharmacol 1998;123:879-889. https://doi.org/10.1038/sj.bjp.0701664
  21. Minghetti L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J Neuropathol Exp Neurol 2004;63:901-910 https://doi.org/10.1093/jnen/63.9.901
  22. Consilvio C, Vincent AM, Feldman EL. Neuroinflammation, COX-2, and ALS: a dual role? Exp Neurol 2004;187:1-10. https://doi.org/10.1016/j.expneurol.2003.12.009
  23. Hoozemans JJ, Rozemuller AJ, Janssen I, De Groot CJ, Veerhuis R, Eikelenboom P. Cyclooxygenase expression in microglia and neurons in Alzheimer’s disease and control brain. Acta Neuropathol 2001;101:2-8.
  24. McGeer PL, McGeer EG. Inflammation and neurodegeneration in Parkinson’s disease. Parkinsonism Relat Disord 2004;10 Suppl 1:S3-S7. https://doi.org/10.1016/j.parkreldis.2004.01.005
  25. Teismann P, Vila M, Choi DK, Tieu K, Wu DC, Jackson-Lewis V, Przedborski S. COX-2 and neurodegeneration in Parkinson’s disease. Ann N Y Acad Sci 2003;991:272-277.
  26. Andreasson K. Emerging roles of PGE2 receptors in models of neurological disease. Prostaglandins Other Lipid Mediat 2010;91:104-112. https://doi.org/10.1016/j.prostaglandins.2009.04.003

Cited by

  1. Molecular Mechanism of Macrophage Activation by Red Ginseng Acidic Polysaccharide from Korean Red Ginseng vol.2012, pp.1466-1861, 2012, https://doi.org/10.1155/2012/732860
  2. Syk/Src Pathway-Targeted Inhibition of Skin Inflammatory Responses by Carnosic Acid vol.2012, pp.1466-1861, 2012, https://doi.org/10.1155/2012/781375
  3. BAY 11-7082 Is a Broad-Spectrum Inhibitor with Anti-Inflammatory Activity against Multiple Targets vol.2012, pp.1466-1861, 2012, https://doi.org/10.1155/2012/416036
  4. Production by Suppression of the AP-1/p38 Pathway vol.2012, pp.1466-1861, 2012, https://doi.org/10.1155/2012/489810
  5. Radical Scavenging Activity-Based and AP-1-Targeted Anti-Inflammatory Effects of Lutein in Macrophage-Like and Skin Keratinocytic Cells vol.2013, pp.1466-1861, 2013, https://doi.org/10.1155/2013/787042
  6. p38/AP-1 Pathway in Lipopolysaccharide-Induced Inflammatory Responses Is Negatively Modulated by Electrical Stimulation vol.2013, pp.1466-1861, 2013, https://doi.org/10.1155/2013/183042
  7. vol.2013, pp.1741-4288, 2013, https://doi.org/10.1155/2013/210736
  8. B-Dependent Manner vol.2014, pp.1466-1861, 2014, https://doi.org/10.1155/2014/658351
  9. Modulates the Inflammatory Responses Mediated by Monocytes and Macrophages vol.2014, pp.1466-1861, 2014, https://doi.org/10.1155/2014/405158
  10. Fermentation of ginseng extracts by Penicillium simplicissimum GS33 and anti-ovarian cancer activity of fermented products vol.30, pp.3, 2014, https://doi.org/10.1007/s11274-013-1520-0
  11. Potential Neuroprotective Activity of Ginseng in Parkinson’s Disease: A Review vol.10, pp.1, 2015, https://doi.org/10.1007/s11481-014-9569-6
  12. Recent advances in ginseng as cancer therapeutics: a functional and mechanistic overview vol.32, pp.2, 2015, https://doi.org/10.1039/C4NP00080C
  13. Pistacia chinensisInhibits NO Production and Upregulates HO-1 Induction via PI-3K/Akt Pathway in LPS Stimulated Macrophage Cells vol.40, pp.5, 2011, https://doi.org/10.1142/s0192415x12500802
  14. Effect of fermented Panax ginseng extract (GINST) on oxidative stress and antioxidant activities in major organs of aged rats vol.47, pp.1, 2011, https://doi.org/10.1016/j.exger.2011.10.007
  15. Korean Red Ginseng Saponin Fraction Downregulates Proinflammatory Mediators in LPS Stimulated RAW264.7 Cells and Protects Mice against Endotoxic Shock vol.36, pp.3, 2011, https://doi.org/10.5142/jgr.2012.36.3.263
  16. Korean Red Ginseng Saponin Fraction Downregulates Proinflammatory Mediators in LPS Stimulated RAW264.7 Cells and Protects Mice against Endotoxic Shock vol.36, pp.3, 2011, https://doi.org/10.5142/jgr.2012.36.3.263
  17. Ginsenoside Rp1 Exerts Anti-inflammatory Effects via Activation of Dendritic Cells and Regulatory T Cells vol.36, pp.4, 2011, https://doi.org/10.5142/jgr.2012.36.4.375
  18. The Effect of Red Ginseng Extract on Inflammatory Cytokines after Chemotherapy in Children vol.36, pp.4, 2011, https://doi.org/10.5142/jgr.2012.36.4.383
  19. Inhibitory effects of total saponin from Korean red ginseng via vasodilator-stimulated phosphoprotein-Ser157 phosphorylation on thrombin-induced platelet aggregation vol.37, pp.2, 2011, https://doi.org/10.5142/jgr.2013.37.176
  20. AP-1-Targeted Anti-Inflammatory Activities of the Nanostructured, Self-Assembling S5 Peptide vol.2015, pp.None, 2011, https://doi.org/10.1155/2015/451957
  21. Protective effect of supplementation with Ginseng, Lilii Bulbus and Poria against PM2.5 in air pollution‐induced cardiopulmonary damage among adults vol.35, pp.2, 2011, https://doi.org/10.1002/ptr.6835