DOI QR코드

DOI QR Code

Various Temperatures Affecting Characteristics of Pt/C Cathode Catalysts for Polymer Electrolyte Membrane Fuel Cells

Polymer Electrolyte Membrane Fuel Cells용 Pt/C 캐소드 전극촉매 특성에 미치는 반응 온도

  • Yoo, Sung-Yeol (Korea Research Institute of Chemical Technology, Energy Materials Center) ;
  • Kang, Suk-Min (Korea Research Institute of Chemical Technology, Energy Materials Center) ;
  • Lee, Jin-A (Korea Research Institute of Chemical Technology, Energy Materials Center) ;
  • Rhee, Choong-Kyun (Graduate School of Analytical Science and Technology, Chungnam National University) ;
  • Ryu, Ho-Jin (Korea Research Institute of Chemical Technology, Energy Materials Center)
  • 유성열 (한국화학연구원 에너지소재센터) ;
  • 강석민 (한국화학연구원 에너지소재센터) ;
  • 이진아 (한국화학연구원 에너지소재센터) ;
  • 이충균 (충남대학교 분석과학기술대학원) ;
  • 류호진 (한국화학연구원 에너지소재센터)
  • Received : 2010.12.30
  • Accepted : 2011.02.24
  • Published : 2011.03.27

Abstract

This study is aimed to increase the activity of cathodic catalysts for PEMFCs(Polymer Electrolyte Membrane Fuel Cells). we investigated the temperature effect of 20wt% Pt/C catalysts at five different temperatures. The catalysts were synthesized by using chemical reduction method. Before adding the formaldehyde as reducing agent, process was undergone for 2 hours at the room temperature (RT), $40^{\circ}C$, $60^{\circ}C$, $80^{\circ}C$ and $100^{\circ}C$, respectively. The performances of synthesize catalysts are compared. The electrochemical oxygen reduction reaction (ORR) was studied on 20wt% Pt/C catalysts by using a glassy carbon electrode through cyclic voltammetric curves (CV) in a 1M H2SO4 solution. The ORR specific activities of 20wt% Pt/C catalysts increased to give a relative ORR catalytic activity ordering of $80^{\circ}C$ > $100^{\circ}C$ > $60^{\circ}C$ > $40^{\circ}C$ > RT. Electrochemical active surface area (EAS) was calculated with cyclic voltammetry analysis. Prepared Pt/C (at $80^{\circ}C$, $100^{\circ}C$) catalysts has higher ESA than other catalysts. Physical characterization was made by using X-ray diffraction (XRD) and transmission electron microscope (TEM). The TEM images of the carbon supported platinum electrocatalysts ($80^{\circ}C$, $100^{\circ}C$) showed homogenous particle distribution with particle size of about 2~3.5 nm. We found that a higher reaction temperature resulted in more uniform particle distribution than lower reaction temperature and then the XRD results showed that the crystalline structure of the synthesized catalysts are seen FCC structure.

Keywords

References

  1. L. Carrette, K. A. Friedrich and U. Stimming, Fuel Cells, 1, 5 (2001). https://doi.org/10.1002/1615-6854(200105)1:1<5::AID-FUCE5>3.0.CO;2-G
  2. B. B. McNicol, D. A. J. Rand and K. R. Williams, J. Power Sourc., 83, 15 (1999). https://doi.org/10.1016/S0378-7753(99)00244-X
  3. M. Baldauf and W. Preidel, J. Power Sourc., 84, 161 (1999). https://doi.org/10.1016/S0378-7753(99)00332-8
  4. G. Sattler, J. Power Sourc., 86, 61 (2000). https://doi.org/10.1016/S0378-7753(99)00414-0
  5. J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd ed., p. 2-5, John Wiley & Sons, England (2003).
  6. J. R. C. Salgado, E. Antolini, E. R. Gonzalez, J. Power Sourc., 138, 56 (2004). https://doi.org/10.1016/j.jpowsour.2004.06.011
  7. F. Barbir and T. Gomez, Int. J. Hydrogen Energ., 21, 891 (1996). https://doi.org/10.1016/0360-3199(96)00030-4
  8. E. Antolini, Appl. Catal. B Environ., 74, 337 (2007). https://doi.org/10.1016/j.apcatb.2007.03.001
  9. S. Mukerjee, S. Srinivasan, M. P. Soriaga and J. McBreen, J. Phys. Chem., 99, 4577 (1995). https://doi.org/10.1021/j100013a032
  10. S. Gottesfeld, T. A. Zawodzinski, Advances in Electrochemical Science and Engineering Vol. 5, p. 195-301, Tobias Wiley-VCH, Weinheim (1997). https://doi.org/10.1002/9783527616794.ch4
  11. A. S. Arico, S. Srinivasan and V. Antonucci, Fuel Cells, 1, 133 (2001). https://doi.org/10.1002/1615-6854(200107)1:2<133::AID-FUCE133>3.0.CO;2-5
  12. E. A. Ticianelli, E. R. Gonzalez, Handbook of Fuel Cells-Fundamentals, Technology and Applications, p. 490-501, John Wiley & Sons, Chichester (2003).
  13. L. Liu, C. Pu, R. Viswanathan, Q. Fan, R. Liu and E. S. Smotkin, Electrochim. Acta, 43, 3657 (1998). https://doi.org/10.1016/S0013-4686(98)00123-6
  14. H. G. Petrow, R. J. Allen, US Patent, 4,044,193 (1977).
  15. S. Lister and G. McLean, J. Power Sourc., 130, 61 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.055
  16. Y. Y. Tong, H. S. Kim, P. K. Babu, P. Waszczuk, A. Wieckowski and E. Oldfield, J. Am. Chem. Soc., 124, 468 (2002). https://doi.org/10.1021/ja011729q
  17. C. Dupont, Y. Jugnet and D. Loffreda, J. Am. Chem. Soc., 128, 9129 (2006). https://doi.org/10.1021/ja061303h
  18. Y. Xu, A.V. Ruban and M. Mavrikakis, J. Am. Chem. Soc., 126, 4717 (2004). https://doi.org/10.1021/ja031701+
  19. V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas and N. M. Markovic, Science, 315, 493 (2007). https://doi.org/10.1126/science.1135941
  20. A. L. Dicks, J. Power Sourc., 156, 128 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.054
  21. D. V. Goia and E. Matijevic, New J. Chem. 22, 1203 (1998). https://doi.org/10.1039/a709236i