DOI QR코드

DOI QR Code

Pancreatic Lipase Inhibitors in the Roots of Taraxacum ohwianum, a Herb Used in Korean Traditional Medicine

민들레 뿌리로부터 Pancreatic lipase 저해 물질의 분리

  • Kim, Tae-Wan (Department of Food Science and Biotechnology, Andong National University) ;
  • Kim, Tae-Hoon (Department of Herbal Medicinal Pharmacology, Daegu Haany University)
  • 김태완 (안동대학교 식품생명공학과) ;
  • 김태훈 (대구한의대학교 한약재약리학과)
  • Received : 2010.09.15
  • Accepted : 2011.01.21
  • Published : 2011.02.28

Abstract

Activity-guided isolation from an ethylacetate-soluble fraction of a 70% (v/v) ethanolic extract from the roots of Taraxacum ohwianum, using a pancreatic lipase inhibition assay, resulted in isolation and identification of five phenolic metabolites of previously known structure; these were 3,5-di-O-caffeoylquinic acid, chicoric acid, caffeic acid, protocatechuic aldehyde, and luteolin. All structures were confirmed by NMR and MS scpectroscopic data. Of these compounds 3,5-di-O-caffeoylquinic acid exhibited the most potent inhibitory activity, with $IC_{50}$ of $65.1{\pm}0.7\;{\mu}M$ against pancreatic lipase.

신선한 울릉도 민들레 뿌리를 70% ethanol로 침지 추출하여 얻어진 추출물을n-hexane, EtOAc, n-BuOH로 순차용매 분획하였다. 이중 상대적으로 높은 pancreatic lipase 저해활성을 나타낸 EtOAc 분획에 대해 Toyopearl 및 $C_{18}$겔을 활용한 column chromatography를 수행하여 5종의 페놀성 화합물을 분리하였다. 각 화합물의 화학구조는 NMR 스펙트럼 데이터 해석 및 표품과의 HPLC 직접 비교를 통하여 3,5-di-O-caffeoylquinic acid, chicoric acid, caffeic acid, protocatechuic aldehyde, luteolin 으로 동정하였다. 이들 화합물중 3,5-di-O-caffeoylquinic acid 는 $IC_{50}$ 값이 $65.1\;{\pm}0.7\; {\mu}M$로 가장 강한 효능을 나타내었으며, 다음으로 tartaric acid의 수산기에 2분자의 caffeic acid가 결합한 chicoric acid 의 IC50 값이 $126.3{\pm}2.3{\mu}M$의 저해능을 나타내었다. 민들레 뿌리의 EtOAc 가용부에에 존재하는 caffeic acid 유도체가 pancreatic lipase 저해활성 물질임을 확인하였으며, 이들 활성은 caffeic acid가 결합한 quinic acid 및 tatrtaric acid 등의 구성화합물에 따라 다름이 시사되었다. 향후 이들 활성물질의 활성 기작에 대한 연구가 필요하며 본 연구결과는 보다 우수한 pancreatic lipase 저해능을 가지는 새로운 선도화합물 발굴을 위한 기초자료로 이용될 수 있을 뿐만 아니라 울릉도에 자생하는 민들레 뿌리의 식물 화학적 성분에 대한 기초자료로 이용될 수 있을 것으로 사료된다.

Keywords

References

  1. Bray GA, Popkin BM (1998) Dietary fat intake dose affect obesity. Am J Clin Nutr, 68, 1157-1173
  2. Bray GA, Popkin BM (1999) Dietary fat affects obesity rate. Am J Clin Nutr, 70, 572-573
  3. Freedman DS, Serdula MK, Perey CA, Whitle L (1997) Obesity levels of lipids and glucose, and smoking among Navajo adolescents. J Nutr, 127, 2120-2127
  4. Rexrode KM, Manson JE, Hennekens CH (1996) Obesity and cardiovascular disease, Curr Opin Cardiol, 11, 490-495 https://doi.org/10.1097/00001573-199609000-00007
  5. Bitou N, Nimomiya M. Tsjita T, Okuda H (1999) Screening of lipase inhibitors from marine algae. Lipids, 34, 441-445 https://doi.org/10.1007/s11745-999-0383-7
  6. Drent ML, Larsson I, William-Olsson T, Quaade F, Czubayko F, Von Bergmann K, Strobel W, Sjotro L, Van der Veen EA (1995) Orlistat (RO 18-0647), a lipase inhibitor, in the treatment of human obesity: a multiple dose study. Int J Obesity, 19, 221-226
  7. Hadvay P, Lengsfeld H, Wolter H (1988) Inhibition of pancreatic lipase in vitro by covalent inhibitor tetrahydrolipstatin, Biochem J, 256, 357-361 https://doi.org/10.1042/bj2560357
  8. Peter C, Williams G (2001) Drug treatment of obesity: from past failures to future successes. Br J Clin Pharmacol, 51, 135-141
  9. Yamamoto M, Shimura Y, Iyoh M Egawa, S Ionue (2000) Anti-obesity effects of lipase inhibitor CT-II, an extract from edible herbs, Nomame Herba, on rats fed a high-fat diet. Int J Obesity, 24, 758-764 https://doi.org/10.1038/sj.ijo.0801222
  10. Birari RB, Bhutani KK (2007) Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Dicov Today, 12, 879-889 https://doi.org/10.1016/j.drudis.2007.07.024
  11. Lee EM, Lee SS, Chung BY, Cho JY, Lee IC, Ahn SR, Jang SJ, Kim TH (2010) Pancreatic lipase inhibition by C-glucosidic flavones isolated from Eremochloa ophiuroides. Molecules, 15, 8251-8259 https://doi.org/10.3390/molecules15118251
  12. Hong JY, Shin SR, Bae MJ, Bae JS, Lee IC, Kwon OJ, Jung JW, Kim YH, Kim TH (2010) Pancreatic lipase inhibitors isolated from the leaves of cultivated mountain ginseng (Panax ginseng). Korean J Food Preserv, 17, 727-732
  13. Kim TH, Kim JK, Ito H, Jo C (2011) Enhancement of pancreatic lipase inhibitory activity of curcumin by radiolytic transformation. Bioorg Med Chem Lett. 21, 1512-1514 https://doi.org/10.1016/j.bmcl.2010.12.122
  14. Kang BS (2000) Bonchohak, 6th edition, Young Lim Sa, Seoul, Korea.
  15. Namba T (1993) The encyclopedia of Wakan-yaku with color pictures vol 1, 68-71, Hoikusha, Osaka, Japan.
  16. Hwang KH, Park TK (2006) The inhibitory activity of the Taraxacum mongolicum on monoamine oxidase. Korean J Pharmacogn, 37, 229-234
  17. Kim JH, Kim HJ, Park HW, Youn SH, Choi DY, Shin CS (2007) Development of inhibitors against lipase and alpha-glucosidase from derivatives of monascus pigment. FEMS Microbiol Lett, 276, 93-98 https://doi.org/10.1111/j.1574-6968.2007.00917.x
  18. Zhu X, Zhang H, Lo R (2004) Phenolic compounds from the leaf extract of Artichoke (Cynara scolymus L.) and their antimicrobial activities. J Agric Food Chem, 62, 7272-7278
  19. Vett M, Strack D, Czygan F-C, Wray V, Witte L (1991) Di-E-caffeoyl-meso-tartaric acid in the barren sprouts of Equisetum arvense. Phytochemistry, 30, 527-529 https://doi.org/10.1016/0031-9422(91)83720-6
  20. Kwon YS, Won HM, Kim CM (2000) Flavonoids from Indigofera pseudo-tinctoria stem. Korean J Pharmacogn, 31, 280-283
  21. Xu M, Zhang Z, Fu G, Sun J, Yang M, Liu Z, Han J, Guo D (2007) Liquid chromatography-tandem mass spectrometry analysis of protocatechuic aldehyde and its phase I and II metabolites in rat. J Chromatogr, 856, 100-107 https://doi.org/10.1016/j.jchromb.2007.05.042
  22. Markham KR, Ternai B, Stanley R, Geiger H, Marbry TJ (1978) Carbon-13 NMR studies of flavonoids-III: Naturally occurring flavonoid glycosides and their acylated derivatives. Tetrahedron, 34, 1389-1397 https://doi.org/10.1016/0040-4020(78)88336-7
  23. Jung HA, Islam MD, Kwon YS, Jin SE, Son YK, Park JJ, Sohn HS, Choi JS (2010) Extraction and identification of three major aldose reductase inhibitors from Artemisia montana. Food Chem Toxicol, In press.
  24. Lee BI, Nugroho A, Bachri MS, Choi J, Lee KR, Kim WB, Lee KT, Lee JD, Park HJ (2010) Anti-ulcerogenic effect and HPLC analysis of the caffeoylquinic acid-rich extract from Ligularia stenocephala. Biol Pharm Bull, 33, 493-497 https://doi.org/10.1248/bpb.33.493
  25. Satake T, Kamiya K, An Y, Oishi Nee Taka T, Yamamoto J (2007) The anti-thrombotic active constituents from Centella asiatica. Biol Pharm Bull, 30, 935-940 https://doi.org/10.1248/bpb.30.935

Cited by

  1. Antioxidative and Antibacterial Activity and Tyrosinase Inhibitory Activity of the Extract and Fractions from Taraxacum coreanum Nakai vol.19, pp.4, 2011, https://doi.org/10.7783/KJMCS.2011.19.4.238
  2. Effects of LED (Light-Emitting Diode) Treatment on Antioxidant Activities and Functional Components in Taraxacum officinale vol.20, pp.3, 2012, https://doi.org/10.7783/KJMCS.2012.20.3.165
  3. 산민들레 종자의 발아특성 연구 vol.24, pp.3, 2011, https://doi.org/10.7783/kjmcs.2016.24.3.177
  4. 흰민들레 발효추출물의 남성 갱년기 개선에 대한 효과 vol.26, pp.9, 2011, https://doi.org/10.5352/jls.2016.26.9.1063
  5. Study of pancreatic lipase inhibition kinetics and LC–QTOF–MS‐based identification of bioactive constituents of Momordica charantia fruits vol.33, pp.4, 2019, https://doi.org/10.1002/bmc.4463
  6. Protocatechuic Aldehyde Inhibits α-MSH-Induced Melanogenesis in B16F10 Melanoma Cells via PKA/CREB-Associated MITF Downregulation vol.22, pp.8, 2011, https://doi.org/10.3390/ijms22083861