The Reduction of Hydrogen Peroxide in Viable Boar Sperm Cryopreserved in the Presence of Catalase

Catalase 첨가에 따른 돼지 정액 동결 및 융해 후 생존 정자에서 Hydrogen Peroxide의 감소

  • Kim, Su-Hee (Department of Veterinary Obstetrics and Theriogenology, College of Veterinary Medicine, Chonbuk National University) ;
  • Lee, Young-Jun (Department of Veterinary Obstetrics and Theriogenology, College of Veterinary Medicine, Chonbuk National University) ;
  • Kang, Tae-Woon (Department of Veterinary Obstetrics and Theriogenology, College of Veterinary Medicine, Chonbuk National University) ;
  • Kim, Yong-Jun (Department of Veterinary Obstetrics and Theriogenology, College of Veterinary Medicine, Chonbuk National University)
  • 김수희 (전북대학교 수의과대학) ;
  • 이영준 (전북대학교 수의과대학) ;
  • 강태운 (전북대학교 수의과대학) ;
  • 김용준 (전북대학교 수의과대학)
  • Accepted : 2011.02.16
  • Published : 2011.02.28

Abstract

Semen cryopreservation induces the formation of reactive oxygen species (ROS), and the ROS cause sperm damage. We aimed to investigate the effects of the antioxidative enzyme catalase (CAT) on sperm quality and ROS during cryopreservation. Sperm rich fractions collected from five Duroc boars were cryopreserved in freezing extender with (200 or 400 U/mL) or without CAT (control). After thawing, sperm motility, viability, normal morphology, plasma membrane integrity, mitochondrial function and intracellular ROS were evaluated. CAT significantly improved total sperm motility at a concentration of 400 U/mL (P < 0.05), but didn't improve progressive sperm motility, viability, morphological defects, plasma membrane integrity and mitochondrial function in frozen-thawed boar sperm. In evaluation of ROS, CAT had no effect on reduction in ${\cdot}O_2$, but scavenged $H_2O_2$ in viable frozen-thawed boar sperm at concentrations of 200 and 400 U/mL (P < 0.05). In conclusion, CAT was not enough to improve quality of frozen-thawed sperm, but can reduce $H_2O_2$ generation in viable boar sperm during cryopreservation.

요 약: 정액 동결 과정은 활성산소종의 생성을 유발하며, 생성된 활성산소종은 정자의 손상을 일으키는 것으로 알려져 있다. 따라서 본 연구의 목적은 동결 과정 중 항산화 효소 중 하나인 catalase (CAT)를 첨가함으로써 융해 후 정자의 기능과 활성산소종의 수준에 미치는 효과를 알아보고자 하였다. 5마리 돼지에서 채취한 정액은 0 (대조군), 200, 400 U/mL CAT가 첨가되어 있는 동결 희석액으로 각각 동결하였다. 융해 후, 정자 운동성, 생존성, 정상 형태율, 형질막 온전성, 미토콘드리아 기능, 세포내 ROS를 평가하였다. CAT는 400 U/mL의 농도에서 전체 정자 운동성을 향상시켰지만 (P < 0.05), 전진 운동성, 생존성, 기형율, 형질막 온전성, 미토콘드리아 기능의 향상을 나타내지 않았다. 활성산소종의 평가에서, CAT는 융해된 생존 정자의 ${\cdot}O_2$의 감소에는 효과를 나타내지 않은 반면 $H_2O_2$를 감소시켰다(P < 0.05). 결론으로 CAT는 동결 및 융해된 정자의 질을 향상시키는 데 큰 효과를 나타내진 않았지만 생존 정자에서 $H_2O_2$을 제거함로써 생존정자의 산화적 손상을 감소시킬 수 있으리라 판단된다.

Keywords

References

  1. Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril 2003; 79: 829-843. https://doi.org/10.1016/S0015-0282(02)04948-8
  2. Aitken RJ, Buckingham D, Harkiss D. Use of a xanthine oxidase free radical generating system to investigate the cytotoxic effects of reactive oxygen species on human spermatozoa. J Reprod Fertil 1993; 97: 441-450. https://doi.org/10.1530/jrf.0.0970441
  3. Aitken RJ. Free radicals, lipid peroxidation and sperm function. Reprod Fertil Dev 1995; 7: 659-668. https://doi.org/10.1071/RD9950659
  4. Almlid T, Johnson LA. Effects of glycerol concentration, equilibration time and temperature of glycerol addition on postthaw viability of boar spermatozoa frozen in straws. J Anim Sci 1988; 66: 2899-2905.
  5. Alvarez JG, Storey BT. Spontaneous lipid peroxidation in rabbit and mouse epididymal spermatozoa: dependence of rate on temperature and oxygen concentration. Biol Reprod 1985; 32: 342-351. https://doi.org/10.1095/biolreprod32.2.342
  6. Awda BJ, Mackenzie-Bell M, Buhr MM. Reactive oxygen species and boar sperm function. Biol Reprod 2009; 81: 553-561. https://doi.org/10.1095/biolreprod.109.076471
  7. Baumber J, Ball BA, Gravance CG, Medina V, Davies-Morel MC. The effect of reactive oxygen species on equine sperm motility, viability, acrosomal integrity, mitochondrial membrane potential, and membrane lipid peroxidation. J Androl 2000; 21: 895-902.
  8. Baumber J, Ball BA, Linfor JJ. Assessment of the cryopreservation of equine spermatozoa in the presence of enzyme scavengers and antioxidants. Am J Vet Res 2005; 66: 772-779. https://doi.org/10.2460/ajvr.2005.66.772
  9. Bilodeau JF, Chatterjee S, Sirard MA, Gagnon C. Levels of antioxidant defenses are decreased in bovine spermatozoa after a cycle of freezing and thawing. Mol Reprod Dev 2000; 55: 282-288. https://doi.org/10.1002/(SICI)1098-2795(200003)55:3<282::AID-MRD6>3.0.CO;2-7
  10. Bucak MN, Atessahin A, Varisli O, Yuce A, Tekin N, Akcay A. The influence of trehalose, taurine, cysteamine and hyaluronan on ram semen Microscopic and oxidative stress parameters after freeze-thawing process. Theriogenology 2007; 67: 1060-1067. https://doi.org/10.1016/j.theriogenology.2006.12.004
  11. Carter WO, Narayanan PK, Robinson JP. Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. J Leukoc Biol 1994; 55: 253-258.
  12. Carvajal G, Cuello C, Ruiz M, Vazquez JM, Martinez EA, Roca J. Effects of centrifugation before freezing on boar sperm cryosurvival. J Androl 2004; 25: 389-396.
  13. Chatterjee S, Gagnon C. Production of reactive oxygen species by spermatozoa undergoing cooling, freezing, and thawing. Mol Reprod Dev 2001; 59: 451-458. https://doi.org/10.1002/mrd.1052
  14. Cohen G, Hochstein P. Glutathione Peroxidase: The primary agent for the elimination of hydrogen peroxide in erythrocytes. Biochemistry 1963; 2: 1420-1428. https://doi.org/10.1021/bi00906a038
  15. Drevet JR. The antioxidant glutathione peroxidase family and spermatozoa: a complex story. Mol Cell Endocrinol 2006; 250: 70-79. https://doi.org/10.1016/j.mce.2005.12.027
  16. Funahashi H, Sano T. Select antioxidants improve the function of extended boar semen stored at 10 degrees C. Theriogenology 2005; 63: 1605-1616. https://doi.org/10.1016/j.theriogenology.2004.06.016
  17. Griveau JF, Dumont E, Renard P, Callegari JP, Le Lannou D. Reactive oxygen species, lipid peroxidation and enzymatic defence systems in human spermatozoa. J Reprod Fertil 1995; 103: 17-26. https://doi.org/10.1530/jrf.0.1030017
  18. Guthrie HD, Welch GR. Determination of intracellular reactive oxygen species and high mitochondrial membrane potential in Percoll-treated viable boar sperm using fluorescence-activated flow cytometry. J Anim Sci 2006; 84: 2089-2100. https://doi.org/10.2527/jas.2005-766
  19. Guthrie HD, Welch GR. Use of fluorescence-activated flow cytometry to determine membrane lipid peroxidation during hypothermic liquid storage and freeze-thawing of viable boar sperm loaded with 4, 4-difluoro-5-(4-phenyl-1,3-butadienyl)-4- bora-3a,4a-diaza-s-indacene-3-und ecanoic acid. J Anim Sci 2007; 85: 1402-1411. https://doi.org/10.2527/jas.2006-787
  20. Hammadeh ME, Radwan M, Al-Hasani S, Micu R, Rosenbaum P, Lorenz M, Schmidt W. Comparison of reactive oxygen species concentration in seminal plasma and semen parameters in partners of pregnant and non-pregnant patients after IVF/ICSI. Reprod Biomed Online 2006; 13: 696-706. https://doi.org/10.1016/S1472-6483(10)60661-X
  21. Jelezarsky L, Vaisberg C, Chaushev T, Sapundjiev E. Localization and characterization of glutathione peroxidase (GPx) in boar accessory sex glands, seminal plasma, and spermatozoa and activity of GPx in boar semen. Theriogenology 2008; 69: 139-145. https://doi.org/10.1016/j.theriogenology.2007.08.016
  22. Kim SH, Yu DH, Kim YJ. Effects of cryopreservation on phosphatidylserine translocation, intracellular hydrogen peroxide, and DNA integrity in canine sperm. Theriogenology 2010; 73: 282-292. https://doi.org/10.1016/j.theriogenology.2009.09.011
  23. Mahfouz R, Sharma R, Lackner J, Aziz N, Agarwal A. Evaluation of chemiluminescence and flow cytometry as tools in assessing production of hydrogen peroxide and superoxide anion in human spermatozoa. Fertil Steril 2009; 92: 819-827. https://doi.org/10.1016/j.fertnstert.2008.05.087
  24. Mahfouz RZ, du Plessis SS, Aziz N, Sharma R, Sabanegh E, Agarwal A. Sperm viability, apoptosis, and intracellular reactive oxygen species levels in human spermatozoa before and after induction of oxidative stress. Fertil Steril 2010; 93: 814-821. https://doi.org/10.1016/j.fertnstert.2008.10.068
  25. Maxwell WM, Stojanov T. Liquid storage of ram semen in the absence or presence of some antioxidants. Reprod Fertil Dev 1996; 8: 1013-1020. https://doi.org/10.1071/RD9961013
  26. Michael A, Alexopoulos C, Pontiki E, Hadjipavlou-Litina D, Saratsis P, Boscos C. Effect of antioxidant supplementation on semen quality and reactive oxygen species of frozen-thawed canine spermatozoa. Theriogenology 2007; 68: 204-212. https://doi.org/10.1016/j.theriogenology.2007.04.053
  27. Michael AJ, Alexopoulos C, Pontiki EA, Hadjipavlou-Litina DJ, Saratsis P, Ververidis HN, Boscos CM. Quality and reactive oxygen species of extended canine semen after vitamin C supplementation. Theriogenology 2008; 70: 827-835. https://doi.org/10.1016/j.theriogenology.2008.05.043
  28. Papaioannou KZ, Murphy RP, Monks RS, Hynes N, Ryan MP, Boland MP, Roche JF. Assessment of viability and mitochondrial function of equine spermatozoa using double staining and flow cytometry. Theriogenology 1997; 48: 299-312. https://doi.org/10.1016/S0093-691X(97)84077-0
  29. Pena FJ, Johannisson A, Wallgren M, Rodriguez Martinez H. Antioxidant supplementation in vitro improves boar sperm motility and mitochondrial membrane potential after cryopreservation of different fractions of the ejaculate. Anim Reprod Sci 2003; 78: 85-98. https://doi.org/10.1016/S0378-4320(03)00049-6
  30. Pursel VG, Johnson LA. Freezing of boar spermatozoa: fertilizing capacity with concentrated semen and a new thawing procedure. J Anim Sci 1975; 40: 99-102.
  31. Ricci G, Perticarari S, Fragonas E, Giolo E, Canova S, Pozzobon C, Guaschino S, Presani G. Apoptosis in human sperm: its correlation with semen quality and the presence of leukocytes. Hum Reprod 2002; 17: 2665-2672. https://doi.org/10.1093/humrep/17.10.2665
  32. Roca J, Rodriguez MJ, Gil MA, Carvajal G, Garcia EM, Cuello C, Vazquez JM, Martinez EA. Survival and in vitro fertility of boar spermatozoa frozen in the presence of superoxide dismutase and/or catalase. J Androl 2005; 26: 15-24.
  33. Rota A, Strom B, Linde-Forsberg C. Effects of seminal plasma and three extenders on canine semen stored at 4 degrees C. Theriogenology 1995; 44: 885-900. https://doi.org/10.1016/0093-691X(95)00278-G
  34. Rothe G, Valet G. Use of hydroethidine (HE) and 2,7-dichlorofluorescin (DCFH) for the flow-cytometric measurement of NADPH-oxidase and mitochondrial oxygen radical formation in phagocytes. Cytometry [Suppl.] 1987; 1: 77.
  35. Sikka SC. Relative impact of oxidative stress on male reproductive function. Curr Med Chem 2001; 8: 851-862. https://doi.org/10.2174/0929867013373039
  36. Thuwanut P, Chatdarong K, Techakumphu M, Axner E. The effect of antioxidants on motility, viability, acrosome integrity and DNA integrity of frozen-thawed epididymal cat spermatozoa. Theriogenology 2008; 70: 233-240. https://doi.org/10.1016/j.theriogenology.2008.04.005
  37. Thuwanut P, Chatdarong K, Johannisson A, Bergqvist AS, Soderquist L, Axner E. Cryopreservation of epididymal cat spermatozoa: effects of in vitro antioxidative enzymes supplementation and lipid peroxidation induction. Theriogenology 2010; 73: 1076-1087. https://doi.org/10.1016/j.theriogenology.2010.01.007
  38. White IG. Lipids and calcium uptake of sperm in relation to cold shock and preservation: a review. Reprod Fertil Dev 1993; 5: 639-658. https://doi.org/10.1071/RD9930639
  39. Zini A, Fischer MA, Mak V, Phang D, Jarvi K. Catalase-like and superoxide dismutase-like activities in human seminal plasma. Urol Res 2002; 30: 321-323. https://doi.org/10.1007/s00240-002-0283-0