DOI QR코드

DOI QR Code

Analysis of Formaldehyde in Fisheries Products

수산물 중 포름알데히드 함량분석

  • 김현아 (부산지방식품의약품안전청) ;
  • 장진욱 (부산지방식품의약품안전청) ;
  • 김도형 (부산지방식품의약품안전청) ;
  • 이휘재 (부산지방식품의약품안전청) ;
  • 이수민 (부산지방식품의약품안전청) ;
  • 장호원 (부산지방식품의약품안전청) ;
  • 이광수 (부산지방식품의약품안전청) ;
  • 이창희 (부산지방식품의약품안전청) ;
  • 장영미 (부산지방식품의약품안전청) ;
  • 강찬순 (부산지방식품의약품안전청)
  • Received : 2010.09.03
  • Accepted : 2010.10.15
  • Published : 2011.02.28

Abstract

In this study, formaldehyde in various fisheries products was previously derivatized with acetylacetone and subsequently analyzed by using HPLC-PDA. The formaldehyde contents ranged from 0.07 to 73.74 mg/kg. The compound was significantly higher in both mollusks (0.34-12.38 mg/kg) and crustaceans (0.09-73.74 mg/kg) than in fish (0.07-3.35 mg/kg) and shellfish (0.50-3.90 mg/kg). This difference was due to storage time and temperature. In general, fish and shellfish are sold live or in refrigerated form with shorter a shelf-life, but mollusks and crustaceans are distributed in cold or frozen systems with a longer shelf-life. Using food intake data from a report of the National Health and Nutrition Survey, the daily human exposure level to formaldehyde was 0.58% of the ADI. The results from this study might provide fundamental information to confirm naturally-originating or fraudulent formaldehyde treatment in fisheries products.

수산물 중 포름알데히드 함량 수준을 평가하기 위하여 어류, 패류, 갑각류 및 연체류 14종을 비교 분석하였다. 수산물 중 포름알데히드 함량은 0.07 mg/kg에서 최고 73.74 mg/kg 수준으로 측정되었다. 어류에서의 함량은 평균 1.29 mg/kg, 패류에서의 함량은 평균 1.70 mg/kg, 갑각류의 경우 평균 7.90 mg/kg으로 어류와 패류에 비교해 유의적으로 높았으며, 특히 꽃게의 경우 최대 73.74 mg/kg까지 함유되어 있었다. 연체류에서의 함량은 평균 3.06 mg/kg수준으로 평가되었다. 유통형태에 따른 함량에서는 대체적으로 살아있는 상태로 유통되는 활어나 활패의 경우 냉장, 냉동 유통보다 낮은 함량을 보였다. 이는 포름알데히드가 사후에 여러 가지 복잡한 과정을 거쳐서 생성되는 것과 함께 수산물에 특이적인 물질인 TMAO가 사후 효소분해 등의 여러 기작을 통해 DMA와 포름알데히드로 분해되어 증가하기 때문인 것(18-21)으로 사료된다. '국민영양조사'와 '영양 및 위해평가 시스템 구축' 연구보고서를 참고하여 노출량 평가를 한 결과, 대상 수산물에 대한 한국인의 평균 일일 섭취량으로 섭취되는 포름알데히드는 0.070 mg/day로 ADI의 0.58% 수준밖에 되지 않았으며, 극단적인 섭취량 평가를 위한 99th 수준에서 섭취되는 포름알데히드는 1.574 mg/day로 ADI의 13.12%에 불과하여 안전한 수준이지만, 더 정확한 노출량 평가를 위해서는 다른 수산물을 포함한 식품에 대한 포름알데히드 함량의 조사와 더불어 섭취량 조사 또한 뒷받침되어야 할 것으로 판단된다.

Keywords

References

  1. WHO. Formaldehyde. Concise International Chemical Assessment Document 40, World Health Organization, Geneva, Switzerland (2002)
  2. KFDA. Formaldehyde. Risk profile. Korea Food and Drug Administration, Seoul, Korea (2007)
  3. EMA. Annex I summary of product characteristics. European Medicines Agency, London, UK (2010)
  4. FEHD. Risk in Brief, Issue No.9: Formaldehyde in food. Food and Environment Hygiene Department, The Government of the Hong Kong Special Administrative Region, Hong Kong, China (2002)
  5. FDA. New Animal Drug Application. Food and Drug Administration, Silver Spring, MD. USA (2006)
  6. WHO. Formaldehyde. Environmental Health Criteria, No. 89, World Health Organization, Geneva, Switzerland (1989)
  7. Wilmer JWGM, Woutersen RA, Appelman LM, Leeman WR, Feron VJ. Subacute (4-week) inhalation toxicity study of formaldehyde in male rats: 8-hour intermittent versus 8-hour continuous exposures. J. Appl. Toxicol. 7: 15-16 (1987) https://doi.org/10.1002/jat.2550070104
  8. Til HP, Woutersen RA, Feron VJ, Hollanders VHM, Falke HE. Two-year drinking-water study of formaldehyde in rats. Food Chem. Toxicol. 27: 77-87 (1989) https://doi.org/10.1016/0278-6915(89)90001-X
  9. Tobe M, Naito K, Kurokawa Y. Chronic toxicity study on formaldehyde administered orally to rats. Toxicology 56: 79-86 (1989) https://doi.org/10.1016/0300-483X(89)90213-8
  10. Pazdrak K, Gorski P, Krakowiak A, Ruta U. Changes in nasal lavage fluid due to formaldehyde inhalation. Int. Arch. Occ. Env. Hea. 64: 515-519 (1993) https://doi.org/10.1007/BF00381101
  11. Lang I, Bruckner T, Triebig G. Formaldehyde and chemosensory irritation in human : A controlled human exposure study. Regul. Toxicol. Pharm. 50: 23-26 (2008) https://doi.org/10.1016/j.yrtph.2007.08.012
  12. Park YS, Lee YJ, Lee KT. Analysis of formaldehyde and acetaldehyde in alcoholic beverage. J. Korean Soc. Food Sci. Nutr. 35: 1412-1419 (2006) https://doi.org/10.3746/jkfn.2006.35.10.1412
  13. Jeong JY, Park SH, Lee KY, Oh SM. Analytical method for analyzing formaldehyde using 2,4-DNPH and gas chromatography/FID, NPD. Korean Ind. Hyg. Assoc. J. 10: 126-146 (2000)
  14. Weng X, Hee CH, Jiang H, Li D. Rapid detection of formaldehyde concentration in food on a polydimethylsiloxane (PDMS) microfluidic chip. Food Chem. 114: 1079-1082 (2009) https://doi.org/10.1016/j.foodchem.2008.10.027
  15. Bechmann IE. Determination of formaldehyde in frozen fish with formaldehyde dehydrogenase using a flow injection system with an incorporated gel-filtration chromatography column. Anal. Chim. Acta. 320: 155-164 (1996) https://doi.org/10.1016/0003-2670(95)00561-7
  16. Tunhun D, Kanont S, Chaiyawat M, Raksakulthai N. Detection of illegal of formaldehyde to fresh fish. Asean Food J. 11: 74-77 (1996)
  17. Bianchi F, Careri M, Musci M, Mangia A. Fish and food safety: Determination of formaldehyde in 12 fish species by SPME extraction and GC-MS analysis. Food Chem. 100: 1049-1053 (2007) https://doi.org/10.1016/j.foodchem.2005.09.089
  18. Sotelo CG, Gallardo JM, Pineiro C, Perez-Martin R. Trimethylamine oxide and derived compounds changes during frozen storage of hake (Merluccius merluccius). Food Chem. 53: 61-65 (1995) https://doi.org/10.1016/0308-8146(95)95787-7
  19. Nielsen MK, Jorgensen M. Quantitative relationship between trimethylamine oxide aldose activity and formaldehyde accumulation in white muscle from gadiform fish during frozen storage. J. Agr. Food Chem. 52: 3814-3822 (2004) https://doi.org/10.1021/jf035169l
  20. Harada K. Studies on enzyme catalysing the formation of formaldehyde and dimethylamine in tissue of fishes and shells. J. Shimonoseki Univ. Fish. 23: 163-241 (1975)
  21. Rey-Mansilla MDM, Sotelo CG, Aubourg SP. Localization of formaldehyde production during frozen storage of European hake (Merluccius merluccius), Eur. Food Res. Technol. 213: 43-47 (2001) https://doi.org/10.1007/s002170100345
  22. KMHW. The 4th Korea Health & Nutrition Examination Survey (KNNHANES IV). Korean Ministry of Health and Welfare, Seoul, Korea (2007)
  23. Jung SH, Kim JW, Jeon IG, Lee YH. Formaldehyde residues in formalin-treated olive flounder (Paralichthys olivaceus), black rockfish (Sebastes schlegeli) and seawater. Aquaculture 194: 253-262 (2001) https://doi.org/10.1016/S0044-8486(00)00530-5
  24. Han YS, Lee DS, Kim SI, Kim DS, Pyeun JH. Nitrogenous constituents in the extract of crabs caught in the Korean adjacent sea. Korean J. Soc. Food Sci. 12: 469-480 (1996)

Cited by

  1. Analysis of free and bound formaldehyde in squid and squid products by gas chromatography–mass spectrometry vol.21, pp.2, 2013, https://doi.org/10.1016/j.jfda.2013.05.010
  2. The Association Between Social Support and Impaired Fasting Glucose and Type 2 Diabetes vol.22, pp.4, 2016, https://doi.org/10.15616/BSL.2016.22.4.189