DOI QR코드

DOI QR Code

Effects of a Carbohydrase Mixture, Ultrasound, and Irradiation Treatments on the Physical Properties of Defatted Mustard Meal-based Edible Films

탈지 겨자씨로 제조한 가식성 생고분자 필름의 물리적 특성에 대한 탄수화물 가수분해 효소 혼합체, 초음파, 그리고 방사선 처리의 효과

  • Yang, Hee-Jae (Department of Food Science and Technology, Seoul Women's University) ;
  • Noh, Bong-Soo (Department of Food Science and Technology, Seoul Women's University) ;
  • Kim, Jae-Hun (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Min, Sea-C. (Department of Food Science and Technology, Seoul Women's University)
  • 양희재 (서울여자대학교 식품공학) ;
  • 노봉수 (서울여자대학교 식품공학) ;
  • 김재훈 (한국원자력연구원 방사선 과학연구소) ;
  • 민세철 (서울여자대학교 식품공학)
  • Received : 2010.11.01
  • Accepted : 2011.01.17
  • Published : 2011.02.28

Abstract

Effects of depolymerization treatments of a carbohydrase mixture (CM), ultrasound, and irradiation on the physical properties of defatted mustard meal-based edible films (DMM films) were investigated. DMM hydrocolloids were added to CM (0.42% (w/w solution)), treated by ultrasound (500-700 W, 10-30 min) or ${\gamma}$-ray (40-100 kGy) to prepare film-forming solutions. Films were formed by drying. The CM treatment at 0.42% (w/w), pH 5.5, and 40-$50^{\circ}C$ with a 0.5 hr incubation time resulted in the highest colloidal stability in the film-forming solution. The depolymerization treatments did not dramatically change the water vapor permeability of the films. The solubility of the film decreased up to 53.1% by the CM treatment. The ultrasound treatment (700 W-30 min) decreased tensile strength and elongation. The ultrasound treatment (600 W-20 min) resulted in more compact and uniform structures of the films. Flavor profiles were differentiated by the power level and the time of the ultrasound treatment.

대부분의 고분자 분쇄 처리는 WVP에 영향을 주지 않았고, 일부 조건에서 WS를 개선시켰으나 그 개선 정도가 변수 크기와 직접적으로 관계되지 않았다. 인장특성의 경우에도 대부분의 처리들에 의해 개선되지 않았으며, 초음파 처리의 경우에는 오히려 인장특성을 저하시키기도 하였다. 고분자 분쇄가 DMM 필름의 특성에 영향을 미칠 것이라고 가설을 세웠지만 향 프로파일을 제외한 DMM 필름의 특성들이 본 연구에서 사용된 조건에서의 고분자 분쇄 처리에 의해 대체적으로 크게 영향을 받지 않았다. 또한 필름의 물리적 특성의 변화에 미치는 그 영향 정도가 고분자 분쇄의 공정 변수 크기에 의해 결정될 것이라고 예상했지만, 초음파와 방사선으로 처리된 탈지 겨자씨 필름은 공정 변수의 크기와 필름의 특성들 간에 상관관계가 없었다는 것을 알아내었다. 이것은 아마도 순수한 단일 생고분자로 구성된 필름의 고분자 네트워크와 복합 생고분자로 구성된 농산물 가공 부산물인 탈지 겨자씨 필름의 고분자 네트워크의 차이 때문이라고 사려된다. 이 연구의 결과를 통해 단일 생고분자 필름의 특성 개선을 위해 사용되는 고분자 분쇄 기술과 처리 변수들의 값들이 복합 생고분자인 탈지 겨자씨 필름에는 그 필름의 특성 개선에 효율적으로 적용되지 않는다는 것이 규명되었다. 이 결과는 다른 복합 생고분자(농산물 가공 부산물)로 가식성 필름을 제작 시 본 연구에 사용된 고분자 분쇄 처리들이 그 필름의 물리적 특성들을 개선하는데 효과적이지 않을 수 있다는 가능성을 말해주기도 한다. 차후 탈지 겨자씨 필름의 특성을 개선하기 위해서 다른 고분자분쇄 기술(예, high pressure homogenization)을 이용해보거나 composite 필름을 제조할 수 있을 것이다.

Keywords

References

  1. Kester JJ, Fennema O. Edible films and coatings: A review. Food Technol. 40: 47-59 (1986)
  2. Gennadios A, Weller CL, Testin RF. Property modification of edible wheat, gluten-based films. Trans. ASAE 36: 465-470 (1993) https://doi.org/10.13031/2013.28360
  3. Krochta JM. Mulder-Johnston CD. Edible and Biodegradable polymer films. Food Technol. 51: 61-74 (1997)
  4. Shellhammer TH and Krochta JM, Whey protein emulsion film performance as affected by lipid type and amount. J. Food Sci. 62:390-394 (1997) https://doi.org/10.1111/j.1365-2621.1997.tb04008.x
  5. Choi SJ, Kim SY, Oh DK, Noh BS. Physical properties of locust bean gum-based edible film. Korean J. Food Sci. Technol. 30: 363-371 (1998)
  6. Petersson M, Stading M. Water vapour permeability and mechanical properties of mixed starch-monoglyceride films and effect of film forming conditions. Food Hydrocolloid 19: 123-132 (2005) https://doi.org/10.1016/j.foodhyd.2004.04.021
  7. Han YJ, Roh HJ, Kim SS. Preparation and physical properties of curdlan composite edible films. Korean J. Food Sci. Technol. 39: 158-163 (2007)
  8. Han YJ, Kim SS. Physical properties of methyl cellulose and hydroxypropylated methyl cellulose films. Korean J. Food Sci. Technol. 39: 521-526 (2007)
  9. Han YJ, Kim SS. Physical properties of Mixed ${\kappa}/{\lambda}$- and ${\kappa}/{\iota}$-carrageenan films. Korean J. Food Sci. Technol. 40: 42-46 (2008)
  10. Min SC, Janjarasskul T, Krochta JM. Tensile and moisture barrier properties of whey protein-beeswax layered composite films. J. Sci. Food Agr. 89: 251-257 (2009) https://doi.org/10.1002/jsfa.3434
  11. Banerjee R, Chen H, Wu J. Milk protein-based edible film mechanical strength changes due to ultrasound process. J. Food Sci. 61: 824-828 (1996) https://doi.org/10.1111/j.1365-2621.1996.tb12211.x
  12. Brault D, D'Aprano G, Lacroix M. Formation of free-standing sterilized edible films from irradiated caseinate. J. Agr. Food Chem. 45: 2964-2969 (1997) https://doi.org/10.1021/jf960955u
  13. Ressouany M, Vachon C, Lacroix M. Irradiation dose and calcium effect on the mechanical properties of cross-linked caseinate film. J. Agr. Food Chem. 46: 1618-1623 (1998) https://doi.org/10.1021/jf970805z
  14. Vachon C, Yu H-L, Yefsah R, Alain R, St-Gelais D, Lacroix M. Mechanical and structural properties of milk protein edible films cross-linked by heating and g-irradiation. J. Agr. Food Chem. 48: 3202-3209 (2000) https://doi.org/10.1021/jf991055r
  15. Kang HJ, Jo C, Lee NY, Kwon JH, Byun MW, A combination of $\gamma$ irradiation and CaCl2 immersion for a pectin-based biodegradable film. Carbohyd. Polym. 60: 547-551 (2005) https://doi.org/10.1016/j.carbpol.2005.02.016
  16. Sablani SS, Dasse F, Bastarrachea L, Dhawan S, Hendrix KM, Min SC. Apple peel-based edible film development using a highpressure homogenization. J. Food Sci. 74: 372-381 (2009)
  17. Kang HJ, Min SC. Potato peel-based biopolymer film development using high-pressure homogenization, irradiation, and ultrasound. Food Sci. Technol. 43: 903-909 (2010)
  18. Cheng W, Chen J, Liu D, Ye X, Ke F. Impact of ultrasonic treatment on properties of starch film-forming dispersion and the resulting films. Carbohyd. Polym. 81: 707-711 (2010) https://doi.org/10.1016/j.carbpol.2010.03.043
  19. Ansharullah, Hourigan JA, Chesterman CF. Application of carbohydrases in extracting protein from rice bran. J. Sci. Food Agr. 74: 141-146
  20. Guan X, Yao H. Optimization of Viscozyme L-assisted extraction of oat bran protein using response surface methodology. Food Chem. 106: 345-351 (2008) https://doi.org/10.1016/j.foodchem.2007.05.041
  21. Zhang Z, Feng H, Niu Y, Eckhoff SR. Starch recovery from degermed corn flour and hominy feed using power ultrasound. Cereal Chem. 82: 447-449 (2005) https://doi.org/10.1094/CC-82-0447
  22. Iida Y, Tuziuti T, Yasui K, Towata A, Kozuka T. Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization. Innov. Food Sci. Emerg. 9: 140-146 (2008) https://doi.org/10.1016/j.ifset.2007.03.029
  23. Martine RD, Michael JG. Why do gelatinized starch granules not dissolve completely? Roles for amylase, protein, and lipid in granule "Ghost" integrity. J. Agr. Food Chem. 55: 4752-4760 (2007) https://doi.org/10.1021/jf070004o
  24. Seguchi M, Higasa T, Mori T. Study of wheat starch structures by sonication treatment. Cereal Chem. 71: 636-639 (1994)
  25. Woods RT, Pikaev AK. Applied Radiation Chemistry: Radiation Processing. John Wiley & Sons, Inc. New York, NY, USA. p. 341 (1994)
  26. Cho M, Kim BY, Rhim JH. Degradation of alginate solution and powder by $\gamma$-irradiation. Food Eng. Prog. 7: 141-145 (2003)
  27. Hendrix KM, Jin T, Min SC. Development of mustard meal coproduct- used biopolymer edible films for food packaging(053-14). In: Abstracts: IFT Annual Meeting 2008. June 28-July 1, New Orleans, LA, USA. Institute of Food Technologiests, Chicago, IL, USA.
  28. McHugh TH, Avena-Bustillos R, Krochta JM. Hydrophilic edible films: Modified procedure for water vapor permeability and explanation of thickness effects. J. Food Sci. 58: 899-903 (1993) https://doi.org/10.1111/j.1365-2621.1993.tb09387.x
  29. ASTM. Standard test method for tensile properties of thin plastic sheeting. D822-01. American Society for Testing and Materials, Philadelphia, PA, USA. pp. 162-170 (1997)
  30. Hong EJ, Son HJ, Kang JH, Noh BS. Analysis of binding trimethylamine with rice-washed solution using electronic nose based on mass spectrometer. Korean J. Food Sci. Technol. 41: 509-514 (2009)
  31. Kim HS, Park WI, Kang MS, Jin HJ. Multiple light scattering measurement and stability analysis of aqueous carbon nanotube dispersions. J. Phys. Chem. Solids. 69: 1209-1212 (2008) https://doi.org/10.1016/j.jpcs.2007.10.062
  32. Avena-Bustillos RJ, Olsen CW, Olson DA, Chiou B, Yee E, Bechtel PJ, Mchugh TH. Water vapor permeability of mammalian and fish gelatin films. J. Food Sci. 71: 202-207 (2006) https://doi.org/10.1111/j.1750-3841.2006.00016.x
  33. Chick J, Ustunol Z. Mechanical and barrier properties of lactic acid and rennet precipitated casein-based edible films. J. Food Sci. 63: 1024-1027 (1998)
  34. Brandenburg AH, Weller CL, Testin RF. Edible films and coatings from soy protein. J. Food Sci. 58: 1086-1089 (1993) https://doi.org/10.1111/j.1365-2621.1993.tb06120.x
  35. Garrisson WM. Reaction mechanism in the radiolysis of peptides, polypeptides, and proteins. Chem. Rev. 87: 381-398 (1987) https://doi.org/10.1021/cr00078a006

Cited by

  1. Development of Hijiki-based Edible Films Using High-pressure Homogenization vol.44, pp.2, 2012, https://doi.org/10.9721/KJFST.2012.44.2.162
  2. Preparation of Makgeolli Residue Protein Film Containing Wasabi Extract and Its Application vol.44, pp.2, 2015, https://doi.org/10.3746/jkfn.2015.44.2.268
  3. Development of Edible Laminate-Composite Films Using Defatted Mustard Meal and Whey Protein Isolate vol.44, pp.6, 2012, https://doi.org/10.9721/KJFST.2012.44.6.711