DOI QR코드

DOI QR Code

Anti-inflammatory Effect of Ethanol Extract from Eupatorium japonicum

등골나물 추출물의 항염증 효과

  • 이한나 (한림대학교 식품영양학과) ;
  • 임도영 (한림대학교 식품영양학과) ;
  • 임순성 (한림대학교 식품영양학과) ;
  • 김종대 (강원대학교 BT특성화학부 식품생명공학) ;
  • 윤정한 (한림대학교 식품영양학과)
  • Received : 2010.10.02
  • Accepted : 2010.11.28
  • Published : 2011.02.28

Abstract

Eupatorium japonicum belongs to a family of Asteraceae plants and flowers of E. japonicum have been consumed as a tea. In this study, we investigated whether E. japonicum extract inhibits lipopolysaccharide (LPS)-induced inflammatory responses in Raw264.7 macrophages. The cells were treated with various concentrations (0, 1, 2.5, 5, or 10 mg/L) of 70% ethanol extract from E. japonicum flowers (EJE) in Raw264.7 cells. LPS-induced nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) production were inhibited by EJE up to 67% and 49% of these productions, respectively without any reduction of viable cell numbers. EJE reduced LPS-induced expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 proteins and their corresponding mRNA levels. Additionally, EJE decreased the levels of interleukin (IL)-6, IL-1${\beta}$, and tumor necrosis factor (TNF)-${\alpha}$ mRNA. EJE was further fractionated with water, butanol, ethylacetate (EA), hexane, or methylene chloride (MC). Among the resulting five fractions, EA and MC, respectively from EJE significantly inhibited LPS-induced NO production (each inhibition rate was 85.3% of 10 mg/L EA fraction and 97.2% of 10 mg/L MC fraction) without significant cytotoxicity in Raw264.7 cells. These results indicate that EJE exhibits powerful effects of anti-inflammation and can be developed as a potential anti-inflammatory agent.

등골나물(Eupatorium japonicum)은 식용으로 이용되어온 식물이지만 생리활성에 대한 연구가 없었다. 따라서 본 연구진은 등골나물 에탄올추출물이 쥐 대식세포인 Raw264.7 세포에 LPS로 유도된 염증 반응에 미치는 영향에 대하여 연구를 수행하였다. 등골나물 꽃 부분에 70% 에탄올을 가하여 얻은 등골나물 에탄올추출물(EJE)을 Raw264.7 세포에 LPS와 함께 0, 1, 2.5, 5, 10 mg/L로 처리하여 세포를 배양하였다. LPS에 의해 생성된 NO 및 $PGE_2$ 분비는 EJE를 처리함에 따라 감소하였고 이 결과는 EJE의 독성에 의한 것이 아님이 증명되었다. Raw264.7 세포에 LPS에 의해 생성된 iNOS, COX-2의 단백질과 mRNA의 발현이 EJE의 농도 의존적으로 억제되었으며, 염증 반응시 생성되는 IL-6, IL-${\beta}$, TNF-${\alpha}$의 mRNA 발현도 등골나물 추출물에 의해 현저히 억제되었다. 더욱이 EJE의 분획물 중 EA와 MC 분획물이 독성이 적으면서 효과적으로 NO의 생성을 억제하는 것으로 나타났다. NO 생성 억제효과가 뛰어난 이들 분획물 내의 생리활성 물질에 대한 연구가 추가적으로 수행되어야 한다고 사료된다. 등골나물 꽃을 추출물로 항염증효과를 연구한 논문이 없고 다른 식용 가능한 천연재료들의 항염증효과와 비교하여(data not shown) EJE 분획물의 항염증효과가 낮은 농도에서 탁월한 점을 미루어 볼 때, 등골나물 추출물은 상당히 낮은 농도에서 뛰어난 항염증 물질을 가진 단일물질을 포함할 가능성이 높다고 사료된다. 따라서 위의 결과는 등골나물 추출물이 독성과 부작용이 적은 염증 치료제로 활용될 수 있는 가능성이 높음을 제시한다.

Keywords

References

  1. Zamora R, Vodovotz Y, Billiar TR. Inducible nitric oxide synthase and inflammatory diseases. Mol. Med. 6: 347-373 (2000)
  2. Hofseth LJ, Ying L. Identifying and defusing weapons of mass inflammation in carcinogenesis. Biochim. Biophys. Acta 1765: 74-84 (2006)
  3. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 6: 3051-3064 (1992)
  4. Moncada S, Palmer RM, Higgs EA. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43: 109-142 (1991)
  5. Yun HY, Dawson VL, Dawson TM. Neurobiology of nitric oxide. Crit. Rev. Neurobiol. 10: 291-316 (1996) https://doi.org/10.1615/CritRevNeurobiol.v10.i3-4.20
  6. Stuehr DJ, Cho HJ, Kwon NS, Weise MF, Nathan CF. Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: An FAD- and FMN-containing flavoprotein. Proc. Natl. Acad. Sci. USA 88: 7773-7777 (1991) https://doi.org/10.1073/pnas.88.17.7773
  7. McCartney-Francis N, Allen JB, Mizel DE, Albina JE, Xie QW, Nathan CF, Wahl SM. Suppression of arthritis by an inhibitor of nitric oxide synthase. J. Exp. Med. 178: 749-754 (1993) https://doi.org/10.1084/jem.178.2.749
  8. Weisz A, Cicatiello L, Esumi H. Regulation of the mouse inducible- type nitric oxide synthase gene promoter by interferon-$\gamma$, bacterial lipopolysaccharide, and NG-monomethyl-L-arginine. Biochem. J. 316: 209-215 (1996) https://doi.org/10.1042/bj3160209
  9. Bishop-Bailey D, Calatayud S, Warner TD, Hla T, Mitchell JA. Prostaglandins and the regulation of tumor growth. J. Environ. Pathol. Tox. Oncol. 21: 93-101 (2002)
  10. Seibert K, Zhang Y, Leahy K, Hauser S, Masferrer J, Perkins W, Lee L, Isakson P. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc. Natl. Acad. Sci. USA 91: 12013-12017 (1994) https://doi.org/10.1073/pnas.91.25.12013
  11. Levy GN. Prostaglandin H synthases, nonsteroidal anti-inflammatory drugs, and colon cancer. FASEB J. 11: 234-247 (1997)
  12. Takahashi M, Mutoh M, Shoji Y, Sato H, Kamanaka Y, Naka M, Maruyama T, Sugimura T, Wakabayashi K. Suppressive effect of an inducible nitric oxide inhibitor, ONO-1714, on AOM-induced rat colon carcinogenesis. Nitric Oxide. 14: 130-136 (2006) https://doi.org/10.1016/j.niox.2005.07.004
  13. Lee DH. The Illustrated Plants Book (pocket book): Summer and autumn Flower and Tree. Ebeerak. Seoul, Korea. p. 274 (2010)
  14. Lee JM. It's Okay to Become Familiar Slowly: 421 of Wild Edible Greens. Hwan creative company. Seoul, Korea. p. 152 (2009)
  15. Denizot F, Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 89: 271-277 (1986) https://doi.org/10.1016/0022-1759(86)90368-6
  16. Cho HJ, Kim WK, Kim EJ, Jung KC, Park S, Lee HS, Tyner AL, Park JH. Conjugated linoleic acid inhibits cell proliferation and ErbB3 signaling in HT-29 human colon cell line. Am. J. Physiol. Gastrointest Liver Physiol. 284: G996-G1005 (2003) https://doi.org/10.1152/ajpgi.00347.2002
  17. Cho HJ, Seon MR, Lee YM, Kim J, Kim JK, Kim SG, Park JH. 3,3-Diindolylmethane suppresses the inflammatory response to lipopolysaccharide in murine macrophages. J. Nutr. 138: 17-23 (2008)
  18. Laflamme N, Rivest S. Toll-like receptor 4: The missing link of the cerebral innate immune response triggered by circulating Gram-negative bacterial cell wall components. FASEB J. 15: 155-163 (2001) https://doi.org/10.1096/fj.00-0339com
  19. Van Snick J. Interleukin-6: An overview. Annu. Rev. Immunol. 8: 253-278 (1990) https://doi.org/10.1146/annurev.iy.08.040190.001345
  20. Delgado AV, McManus AT, Chambers JP. Production of tumor necrosis factor-$\alpha$, interleukin 1-$\beta$, interleukin 2, and interleukin 6 by rat leukocyte subpopulations after exposure to substance Proc. Neuropeptides 37: 355-361 (2003)
  21. Maes M. The cytokine hypothesis of depression: Inflammation, oxidative & nitrosative stress (IO & NS) and leaky gut as new targets for adjunctive treatments in depression. Neuroendocrinol. Lett. 29: 287-291 (2008)

Cited by

  1. Physicochemical Changes in Hemerocallis coreana Nakai After Blanching, Drying, and Fermentation vol.42, pp.10, 2013, https://doi.org/10.3746/jkfn.2013.42.10.1638
  2. Comparison of Effect of Water and Ethanolic Extract from Roots and Leaves of Allium hookeri vol.43, pp.12, 2014, https://doi.org/10.3746/jkfn.2014.43.12.1808
  3. Anti-Inflammatory Activity of Salvia plebeia R. Br. Leaf through Heme Oxygenase-1 Induction in LPS-Stimulated RAW264.7 Macrophages vol.41, pp.7, 2012, https://doi.org/10.3746/jkfn.2012.41.7.888
  4. Anti-inflammatory Effect and Antioxidative Activities of Ingredients used in Bibimbab vol.23, pp.2, 2013, https://doi.org/10.5352/JLS.2013.23.2.213
  5. Anti-Inflammatory and Anti-Allergic Effects of Adenophora triphylla var. japonica Extract     vol.25, pp.5, 2015, https://doi.org/10.17495/easdl.2015.10.25.5.813
  6. Anti-inflammatory Activity of the Water Extract of Sargassum fulvellum vol.27, pp.6, 2012, https://doi.org/10.7841/ksbbj.2012.27.6.325
  7. Changes in Physicochemical Properties of Actinidia arguta (Siebold & Zucc.) Planch. ex Miq. by Blanching, Drying, and Fermentation vol.44, pp.3, 2015, https://doi.org/10.3746/jkfn.2015.44.3.425
  8. Enhancement of skin anti-inflammatory activities ofScutellaria baicalensisextract using a nanoencapsulation process vol.16, pp.6, 2014, https://doi.org/10.3109/14764172.2014.946051