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REGULARIZED SOLUTION TO THE FREDHOLM INTEGRAL

EQUATION OF THE FIRST KIND WITH NOISY DATA†

JIN WEN AND TING WEI∗

Abstract. In this paper, we use a modified Tikhonov regularization method
to solve the Fredholm integral equation of the first kind. Under the as-
sumption that measured data are contaminated with deterministic errors,
we give two error estimates. The convergence rates can be obtained under
the suitable choices of regularization parameters and the number of mea-
sured points. Some numerical experiments show that the proposed method
is effective and stable.
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1. Introduction

Consider the Fredholm integral equation of the first kind
∫ 1

0

K(t, s)f(s)ds = g(t), (1)

whereK(t, s) is a given function called the kernel of an integral equation and g(s)
is measured discretely with deterministic errors. Define the following operator

K : H → L2[0, 1], (Kf)(t) =

∫ 1

0

K(t, s)f(s)ds, (2)

where H is either L2[0, 1] or a reproducing kernel Hilbert space HR with repro-
ducing kernel R(t, s).
The Fredholm integral equation of the first kind is well known as an ill-posed
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problem by Hadamard’s sense (see Ch.1 in [6] and [8, 14]). By the Riemann-
Lebesgue lemma (see, e.g., [3, 4]), we know

∫ 1

0

K(t, s) sin γsds → 0, as γ → ∞,

which means that high frequency noise in a solution may be screened out by the
integral operator, or it is equivalent to say that a very small change in the data
g may lead to a large change in the solution f . Thus, we know the problem of
Fredholm integral equation is ill-posed.

As a classical ill-posed problem, the Fredholm integral equations of the first
kind have been investigated by many references, see [4]. One popular method
is the Tikhonov regularization, but usually a continuous functional is used and
the minimizer for the corresponding functional is difficult to be obtained. Many
inverse problems can be formularized as a Fredholm integral equations of the
first kind, for examples, the backward heat equation, harmonic continuation,
and numerical differentiation [3].

In [7], the author discussed the equivalence of Tikhonov regularization and
reproducing kernel Hilbert space approaches for the Fredholm integral equation
of the first kind. In [11], Lukas gave a moment collocation method for the linear
operator equations, and he also obtained the convergence rate results for the
solutions of the Fredholm integral equations of the first kind. Recently, Li and
Nashed gave a modified Tikhonov regularization method for the linear operator
equations(see [9]), which is different from our method, and they obtained opti-
mal convergence order of the regularized solutions by an a priori choice of the
regularization parameter.

In this paper, we solve the Fredholm integral equation of the first kind by
a modified Tikhonov regularization method based on the reproducing kernel
Hilbert space, refer to [17, 18], and propose two a priori rules for choices of
regularization parameters.

Find fδ
n,α in H to be the solution of the following minimization problem

min
h∈H

Φ(h) =
1

n

n∑

j=1

[
(Kh) (tj)− gδ(tj)

]2
+ α‖h‖2H, (3)

where H is a real Hilbert space mentioned in (2), {tj}nj=1 are the measured

points with 0 = t1 < t2 < · · · < tn = 1 and gδ(tj) are the noisy data of function
g at points tj for j = 1, 2, · · · , n.

In [10, 12, 15, 16, 17, 18], the noisy data {gδ(tj)}nj=1 were assumed to contain
some random errors. However, in practical applications, the reduplicated mea-
surements are fairly difficult and even are impossible. Hence, in this paper, we
consider the deterministic errors. Assume that the noisy data are given by

gδ(tj) = g(tj) + εj ,
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and root mean square error in the noisy data is bounded by a noise level δ as√√√√ 1

n

n∑

j=1

ε2j ≤ δ.

In Section 3, we will show that the solution fδ
n,α to the problem (3) can be

expressed by

fδ
n,α = (ηt1 , ηt2 , · · · , ηtn)(Qn + nαI)−1(gδ(t1), g

δ(t2), · · · , gδ(tn))′,
where {ηti}ni=1 and Qn will be given in latter sections. The error estimate and
convergence rate between the approximate solution fδ

n,α and one exact solution

K†g are proved in Section 4, where K†g is that element f with minimal H norm
satisfying Kf = g. In Section 5, we test two examples and numerical results
show that our proposed method is effective and stable.

2. Preliminaries

In this section, some definitions and assumptions are reviewed as preparations
for the proof of error estimates.

2.1.Reproducing Kernel Hilbert Space and Reproducing Kernel. In
[1, 13], authors discussed the properties of RKHS, which are restated below. A
Hilbert space HR of real-valued functions defined in a closed interval [0, 1] is said
to be a reproducing kernel Hilbert space (RKHS) if all the evaluation functionals
f → f(s) for f ∈ HR and s ∈ [0, 1] are continuous. In this case there exists, by
the Riesz representation theorem, a unique element in HR (call it Rs) such that

〈Rs, f〉R = f(s), f ∈ HR,

where 〈·, ·〉R is the inner product in HR. The reproducing kernel (RK) is defined
by

R(s, s′) := 〈Rs, Rs′〉R , s, s′ ∈ [0, 1].

Here, we take Sobolev space Hm(0, 1) as an example of an RKHS, for an
integer m, m ≥ 1,

Hm(0, 1) = {f : f ∈ Cm−1 absolutely continuous, f (m) ∈ L2(0, 1)},
with the inner product

〈φ, ψ〉Hm(0,1) = 〈φ, ψ〉L2(0,1)
+
〈
φ(m), ψ(m)

〉
L2(0,1)

.

Then, the reproducing kernel is the Green’s function for the Sturm-Liouville
problem

(−1)mu(2m) + u = w, in (0, 1),

u(k)(0) = u(k)(1) = 0, k = m, · · · , 2m− 1.

Assume that the linear functional Lt : f ∈ H → (Kf) (t) is continuous for
a fixed t ∈ [0, 1], then by Riesz representation theorem, there exists a unique
ηt ∈ H such that Ltf = (Kf) (t) = 〈ηt, f〉 for all f ∈ H in which 〈·, ·〉 is the inner
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product in H. In RKHS, the Riesz representation element of a continuous linear
functional is generated by applying this linear operator onto the RK. Thus, if H
is an RKHS, then we have ηt(s) = 〈ηt, Rs〉 = KRs =

∫ 1

0
K(t, u)R(s, u)du, and if

H = L2[0, 1], then it is clear that ηt(s) = K(t, s). Define Q(t, s) = 〈ηt, ηs〉 and
note that Qt(s) = Q(t, s) = Kηs, then the function Q(t, s) is given by

Q(t, s) =

{ ∫ 1

0
K(t, u)K(s, u)du, if H = L2[0, 1],∫ 1

0

∫ 1

0
K(t, u)K(s, v)R(u, v)dudv, if H = HR.

(4)

We suppose that Q(t, s) is continuous on [0, 1]× [0, 1], then Q(t, t) is well defined
and finite for every fixed t ∈ [0, 1], and all the Lt are continuous. Moreover,
if we require that N (K∗), the null space of K∗ (in L2[0, 1]), is trivial, then the
proposed RK is positive definite. Even though N (K∗) is nontrivial, H should be
replaced by the orthogonal complement of N (K∗).

Let HQ be the reproducing kernel Hilbert space with reproducing kernel
Q(t, s), t, s ∈ [0, 1] and inner product 〈·, ·〉Q. Here, by the isometric isomor-
phism between H and HQ, we give the definition of the inner product in RKHS
HQ as follows:

〈Kf,Kg〉Q = 〈f, g〉 , for all f, h ∈ H, (5)

see [13] for more details.

2.2.Some assumptions. In this paper, the following assumptions should be
used.

Assumption 1. The errors in noisy data satisfy the following condition

1

n

n∑

i=1

ε2i ≤ δ2,

where the constant δ > 0 is called the noise level.

Assumption 2. The exact data {g(ti)}ni=1 satisfy

1

n

n∑

i=1

g2(ti) ≤ E2,

where E is a constant.

Assumption 3. Denote Qn as an n × n matrix with ijth entry
〈
ηti , ηtj

〉
=

Q(ti, tj) which is given by (4) and λn is its smallest eigenvalue. Assume that λn

satisfies one of the following conditions:
(H1) λn ≥ c( 1n )

m for one m ≥ 1, where c > 0 is a constant;
(H2) λn ≥ cβn, where c > 0 and 0 < β < 1 are both constants.

Remark. Note that constants m and β above depend on the choice of kernel
function K(t, s).



Regularized solution to the Fredholm integral equation of the first kind 27

3. The regularized solution fδ
n,α to the problem (3)

In this paper, we assume that {ηti}ni=1 are linearly independent. Then {ηti}ni=1

span a subspace of H, and we denote Vn := span{ηt1 , ηt2 , · · · , ηtn}. Thus, for
every function f ∈ H, f can be expressed as f = φ + f0 with φ ∈ Vn and
f0 ∈ V ⊥

n . In the paper [17], the author had stated that the solution fδ
n,α to the

problem (3) is a function in space Vn given by

fδ
n,α = (ηt1 , ηt2 , · · · , ηtn)(Qn + nαI)−1(gδ(t1), g

δ(t2), · · · , gδ(tn))′, (6)

where Qn is an n×nmatrix with ijth entry
〈
ηti , ηtj

〉
= Q(ti, tj). In the following

we give a proof in Theorem 1.
Define gδn,α ≡ Kfδ

n,α, then by the definitions of ηt and Q(t, s), we have

gδn,α = (Qt1 , Qt2 , · · · , Qtn)(Qn + nαI)−1(gδ(t1), g
δ(t2), · · · , gδ(tn))′, (7)

where Qt is given by Qt(s) = Q(t, s).

Theorem 1. Under the assumptions in Section 2.1, the solution to problem (3)
is given by (6).

Proof. Let f ∈ H and write it as f = φ + ψ with φ ∈ Vn and ψ ∈ V ⊥
n . Then,

for i = 1, 2, · · · , n,
(Kf)(ti) = 〈ηti , f〉H = 〈ηti , φ〉H + 〈ηti , ψ〉H = 〈ηti , φ〉H = (Kφ)(ti). (8)

By Pythagoras’ theorem, ‖f‖2H = ‖φ+ψ‖2H = ‖φ‖2H+ ‖ψ‖2H. Combining this
with (8), we obtain that

Φ(f) =
1

n

n∑

j=1

[
(Kφ) (tj)− gδ(tj)

]2
+ α‖φ‖2H + α‖ψ‖2H, (9)

and minimizing this over ψ ∈ V ⊥
n gives that ψ = 0.

Thus, the minimizer of Φ can be written as fδ
n,α =

∑n
j=1 cjηtj , and substi-

tuting this into functional Φ gives

Φ(fδ
n,α) =

1

n

n∑

i=1




n∑

j=1

cj
〈
ηti , ηtj

〉− gδ(ti)



2

+ α

n∑
p=1

n∑
q=1

cpcq
〈
ηtp , ηtq

〉
. (10)

Differentiating (10) with respect to cj , j = 1, 2, · · · , n and setting them all equal
to zero, we have

2

n

n∑

i=1

[
n∑

q=1

cq
〈
ηti , ηtq

〉− gδ(ti)

]
〈
ηti , ηtj

〉
+ 2α

n∑

i=1

ci
〈
ηti , ηtj

〉
= 0,

for j = 1, 2, · · · , n. In matrix-vector notation, this may be written as

(c1, c2, · · · , cn)(Q′
n + nαI)Qn = (gδ(t1), g

δ(t2), · · · , gδ(tn))Qn.
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Since {ηti}ni=1 are linearly independent, Qn is nonsingular and positive definite.
Furthermore, Q′

n = Qn. Thus, Qn and Qn +nαI for α > 0 are invertible. Then

(c1, c2, · · · , cn) = (gδ(t1), g
δ(t2), · · · , gδ(tn))(Qn + nαI)−1.

The proof of Theorem 1 is completed. ¤

4. Error estimates and convergence rates

For the convergence rates of the regularization solution, in [4, 5, 10, 17],
the authors had already obtained some results where they assumed that the
errors {ε(ti)}ni=1 were uncorrelated random variables with zero mean (“white
noise”) and gave some convergence rates on the mathematical expectation of
the computed error. In this section, we will discuss the convergence rates by
using the deterministic noisy data under suitable choice for the regularization
parameter and the number of measured points.

For the simplicity of proof, hereafter we suppose that the {ti}ni=1 are equally
distributed points, ti = (i− 1)/(n− 1), i = 1, 2, · · · , n.

From paper [13], we know K(H) = HQ, and for g ∈ HQ, ‖K†g − fδ
n,α‖2H =

‖K(K†g)−Kfδ
n,α‖2Q = ‖g − gδn,α‖2Q, where ‖ · ‖Q is the norm in HQ, see [13] for

details.
Define an orthogonal projection operator Pn :HQ → Hn, where Hn :=

span{Qt1 , Qt2 , · · · , Qtn}. Obviously,Hn ⊂ HQ. By gδn,α, Png ∈ Hn, Png−gδn,α ∈
Hn, and g − Png ∈ H⊥

n (the orthogonal complement of subspace Hn), we have

‖g − gδn,α‖2Q = ‖g − Png‖2Q + ‖Png − gδn,α‖2Q.
In order to obtain the convergence rates of the regularization solution, we

first list the following theorem about ‖g − Png‖Q in [16].

Theorem 2. Let g have a representation

g(t) =

∫ 1

0

Q(t, s)ρ(s)ds

for some ρ ∈ L2[0, 1] and suppose that Q(t, s) satisfies:
(i) (∂l/∂tl)Q(t, s) exists and is continuous on [0, 1] × [0, 1] for t 6= s, l =

0, 1, 2, · · · , 2q, (∂l/∂tl)Q(t, s) exists and is continuous on [0, 1] × [0, 1] for l =
0, 1, 2, · · · , 2q − 2;

(ii) limt↑s(∂2q−1/∂t2q−1)Q(t, s) and limt↓s(∂2q−1/∂t2q−1)Q(t, s) exist and
are bounded for all s ∈ [0, 1].

Then g ∈ HQ and

‖g − Png‖Q ≤ (6q)q(C1(tn − t1) + C2)
1/2

[∫ 1

0

ρ2(t)dt

]1/2
(n− 1)−q,
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where

C1 = (1 + 2qΘq) sup
t 6=s,t,s∈[0,1]

∣∣∣∣
1

(2q)!

∂2q

∂t2q
Q(t, s)

∣∣∣∣ ,

C2 = 2(1 + 2qΘq) sup
t,s∈[0,1]

∣∣∣∣
1

(2q − 1)!

∂2q−1

∂t2q−1
Q(t, s)

∣∣∣∣ ,

Θq = [3(2q − 1)]2q−1,

and it is understood that if ∂2q−1

∂t2q−1Q(t, s) is undefined the maximum of the left
and right absolute derivative is taken.

In the following, we will give an error bound for ‖Png − gδn,α‖2Q.
By the definition of orthogonal projection operator Pn :HQ → Hn, it is easy

to obtain

Png = (Qt1 , Qt2 , · · · , Qtn)Q
−1
n (g(t1), g(t2), · · · , g(tn))′. (11)

Using (7) and (11), we further have

Png − gδn,α = (Qt1 , Qt2 , · · · , Qtn)
[
nα(Qn + nαI)−1Q−1

n g − (Qn + nαI)−1ε
]
, (12)

where g and ε are defined as g = (g(t1), g(t2), · · · , g(tn))′ and ε = (ε1, ε2, · · · , εn)′,
respectively. By (12), we have

‖Png − gδn,α‖2Q = ‖(Qt1 , Qt2 , · · · , Qtn)
[
nα(Qn + nαI)−1Q−1

n g − (Qn + nαI)−1ε
] ‖2Q

= (nα)2g′Q−1
n (Qn + nαI)−1Qn(Qn + nαI)−1Q−1

n g

− 2nαg′Q−1
n (Qn + nαI)−1Qn(Qn + nαI)−1ε

+ ε′(Qn + nαI)−1Qn(Qn + nαI)−1ε.

It is known that the positive definite matrix Qn has the decomposition Qn =
ΓDΓ′, where Γ is an orthogonal matrix and D is diagonal with ννth entry λν ,
thus we further obtain

‖Png − gδn,α‖2Q = (nα)2g′ΓD−1(D + nαI)−1D(D + nαI)−1D−1Γ′g

− 2nαg′ΓD−1(D + nαI)−1D(D + nαI)−1Γ′ε

+ ε′Γ(D + nαI)−1D(D + nαI)−1Γ′ε

= (nα)2g′Γ(D + nαI)−1D−1(D + nαI)−1Γ′g

− 2nαg′Γ(D + nαI)−1(D + nαI)−1Γ′ε

+ ε′Γ(D + nαI)−1D(D + nαI)−1Γ′ε.
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Furthermore, by Assumptions 1–2, note that Γ is orthogonal matrix, we get the
following estimate:

‖Png − gδn,α‖2Q ≤ (nα)2‖g′‖2‖(D + nαI)−2D−1‖2‖g‖2
+ 2nα‖g′‖2‖(D + nαI)−1‖22‖ε‖2
+ ‖ε′‖2‖(D + nαI)−2D‖2‖ε‖2

≤ n3α2E2

λn(λn + nα)2
+

2n2αEδ

(λn + nα)2
+

δ2

4α

≤ n2αE2

4λ2
n

+
nEδ

2λn
+

δ2

4α
,

(13)

where ‖·‖2 is the 2-norm of a vector or a matrix and λn is the smallest eigenvalue

of matrix Qn, and the last term δ2

4α follows from

λi

(λi + nα)2
=

1

(
√
λi + nα/

√
λi)2

≤ 1

4nα
,

for all i = 1, 2, · · · , n.
Next, we will discuss convergence rates of the regularized solution and the

generalized inverse K†g through the assumptions (H1) and (H2) in Assumption
3, respectively.

In the case of (H1), namely, λn ≥ c( 1n )
m, we have the following

the right hand side of (13) ≤ αn2m+2E2

4c2
+

nm+1Eδ

2c
+

δ2

4α
. (14)

Then, we can choose a regularization parameter α = k1δ
3
2 by an a priori rule

and choose the total number of the measured points n such that 1
n ≈ 1

k2
δ

1
2m+2 .

Thus, substituting n = [k2δ
− 1

2m+2 ] and α = k1δ
3
2 into (14) yields

‖Png − gδn,α‖2Q ≤ k1k
2m+2
2 E2δ

1
2

4c2
+

km+1
2 Eδ

1
2

2c
+

δ
1
2

4k1
= O(δ

1
2 ), as δ → 0.

If the smallest eigenvalue of matrix Qn satisfies condition (H2) in Assumption
3, namely, we have λn ≥ cβn for 0 < β < 1, then we can obtain the following
estimate

the right hand side of (13) ≤ n2αE2

4c2β2n
+

nEδ

2cβn
+

δ2

4α
. (15)

For δ < 1, take βn ≈
√
δ, i.e., n = [ ln δ

2 ln β ], and choose a regularization parameter

α = k1δ
3
2 | ln δ|−1, then (15) becomes

‖Png−gδn,α‖2Q ≤ k1E
2δ

1
2 | ln δ|

16c2| lnβ|2 +
Eδ

1
2 | ln δ|

4c| lnβ| +
δ

1
2 | ln δ|
4k1

= O(δ
1
2 | ln δ|), as δ → 0.

Note that, δ
1
2 | ln δ| → 0, as δ → 0, thus we have the following convergence

estimates.
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Theorem 3. Suppose that Assumptions 1–2 and the conditions in Theorem 2
hold, then we have the following convergence rates:

(i) If condition (H1) in assumption 3 is satisfied, then choose α = k1δ
3
2 and

n = [k2δ
− 1

2m+2 ], we obtain the Hölder-type estimate

‖K†g − fδ
n,α‖2H = O(δ

q
m+1 ) +O(δ

1
2 ), as δ → 0;

(ii) If condition (H2) in assumption 3 is satisfied, choose α = k1δ
3/2| ln δ|−1

and n = [ ln δ
2 ln β ], then we obtain the log-type estimate

‖K†g − fδ
n,α‖2H = O((

2 lnβ

ln δ
)2q) +O(δ

1
2 | ln δ|), as δ → 0.

5. Numerical verification

In this section, we test two numerical examples. To verify the computational
accuracy of numerical solutions, we calculate the root mean square error (RMSE)
by

E(fδ
n,α) =

√√√√ 1

N

N∑

i=1

(fδ
n,α(t̄i)−K†g(t̄i))2.

where {t̄i} are test points and N is the total number of uniformly distributed
points on [0, 1]. In our computations, we always take N = 201.

Example 1. Let the Fredholm integral equation of first kind be

(Kf)(t) =

∫ 1

0

exp(ts)f(s)ds =
exp(t+ 1)− 1

t+ 1
, t ∈ [0, 1],

where the exact solution is f(s) = exp(s).

In this example, kernel function is K(t, s) = exp(ts), K : L2[0, 1] → HQ,

(Kf)(t) = g(t), where g(t) = exp(t+1)−1
t+1 . In our computations, the noisy

data gδ(ti) are generated by gδ(ti) = g(ti) + δ cos(4tiπ) where ti =
i−1
n−1 for i =

1, 2, · · · , n. The subspace of L2[0, 1] is Vn := span{1, exp( s
n−1 ), exp(

2s
n−1 ), · · · ,

exp(s)} and the reproducing kernel of HQ is Q(t, s) = 1
t+s (exp(t + s) − 1) for

t + s 6= 0 and Q(t, s) = 1 for t = s = 0. Note that Q(t, s) is infinitely differen-
tiable with respect to t, convergence rate for ‖g−Png‖Q is much higher than the
one for ‖gδn,α − Png‖Q in Theorem 3. In this example, the ijth entry of matrix
Qn is given by follows:

Q(ti, tj) =

{
1, if i = j = 1,
n−1

i+j−2 (exp(
i+j−2
n−1 )− 1), otherwise.

In numerical experiments, we use the a priori choice rule for the regularization
parameter α = k1δ

3
2 , where k1 is fixed at 0.05. Because the condition H1 or H2

can not be verified for this example, the best number n can not be given by
our proposed method. In our test, we compute some numerical results by using
various numbers n = 31, 41, 51. The computed results are shown in Figs. 1− 3.
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(a) δ = 0.001, n = 31;
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(b) δ = 0.001, n = 41; (c) δ = 0.001, n = 51.

Fig. 1: Solid lines represent the exact solution data and stars are
computed approximate data.

Fig. 1 shows numerical results for n = 31, 41, 51 respectively when the noise
level δ = 0.001. The RMSEs for n = 31, 41, 51 are 0.0529, 0.0506, 0.0492,
respectively.

Fig. 2 displays numerical results for n = 31, 41, 51, respectively when the
noise level δ = 0.0001. The RMSEs when n = 31, 41, 51 are all 0.0084. It is
observed that the results for δ = 0.0001 are much better than δ = 0.001.

Fig. 3 shows the plots of RMSEs with respect to n for δ = 0.001 and δ =
0.0001 respectively. It can be observed that there is no large change for RMSEs
while 20 < n < 200.

Example 2. The second example is chosen as following:

∫ 1

0

exp(−ts)f(s)ds =
3− 3 exp(−t) cos(3)− exp(−t)t sin(3)

t2 + 9
, t ∈ [0, 1],

where the exact solution is f(s) = sin(3s).
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(a) δ = 0.0001, n = 31;
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(b) δ = 0.0001, n = 41; (c) δ = 0.0001, n = 51.

Fig. 2: Solid lines represent the exact solution data and stars are
computed approximate data.
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Fig. 3: RMSEs with respect to n.
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In this example, K(t, s) = exp(−ts), g(t) = 3−3 exp(−t) cos(3)−exp(−t)t sin(3)
t2+9 and

reproducing kernel Q(t, s) = 1
t+s (1− exp(−t− s)) for t+ s 6= 0 and Q(t, s) = 1

for t = s = 0. In our computations, we also give the noisy data gδ(ti) by
gδ(ti) = g(ti) + δ sin(4(0.5− ti)π) where ti =

i−1
n−1 for i = 1, 2, · · · , n. In this ex-

ample, Vn := span{1, exp(− s
n−1 ), exp(− 2s

n−1 ), · · · , exp(−s)} and the ijth entry
of Qn is given below:

Q(ti, tj) =

{
1, if i = j = 1,
n−1

i+j−2 (1− exp(− i+j−2
n−1 )), otherwise.

In numerical experiments, we also use the a priori choice rule for the regu-
larization parameter α as the same as the Example 1, but k1 is fixed at 0.02.
Because the condition H1 or H2 can not be verified for this example, either,
the best number n can not be given by our proposed method. In our test, we
compute some numerical results by using various numbers n = 31, 41, 51. The
computed results are illustrated in Figs. 4− 6.

Fig. 4 illustrates the results about n = 31, 41, 51 respectively when the noise
level δ = 0.001. And the RMSEs when n = 31, 41, 51 are 0.0432, 0.0428, 0.0425,
respectively.

Fig. 5 shows the results about n = 31, 41, 51 respectively when the noise level
δ = 0.0001. And the RMSEs when n = 31, 41, 51 are 0.0129, 0.0143, 0.0154,
respectively. They also show that the results when δ = 0.0001 are much better
than δ = 0.001.

Fig. 6 illustrates the plots of RMSEs with respect to n for δ = 0.001 and
δ = 0.0001 respectively. It can also be observed that there is no large change
for RMSEs while n becomes larger and larger, but there is a minimum at about
n = 20 when δ = 0.0001.

6. Conclusions

In this paper, based on reproducing kernel Hilbert space, we solve the Fred-
holm integral equation of the first kind by a modified Tikhonov regularization
method when the errors are deterministic. Under the suitable choices of the reg-
ularization parameter and the number of measured points, we obtain two error
estimates and convergence rates for the regularized solution. Numerical results
for two examples show the effectiveness and stability of the proposed method.
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(b) δ = 0.0001, n = 41; (c) δ = 0.0001, n = 51.

Fig. 5: Solid lines represent the exact solution data and stars are
computed approximate data.
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