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SOLUTION OF A NONLINEAR EQUATION WITH
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Abstract. The aim of the paper is to apply Homotopy Perturbation
Method (HPM) for the solution of a nonlinear fractional differential equa-
tion. Finally, the solution obtained by the Homotopy perturbation method
has been numerically evaluated and presented in the form of tables and
then compared with those obtained by truncated series method. A good
agreement of the results is observed.
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1. Introduction

The fractional derivative has been occuring in many physical problems such
as frequency dependent damping behavior of materials, motion of a large thin
plate in a Newtonian fluid, creep and relaxation functions for viscoelastic ma-
terials, the PIλDµ controller for the control of dynamical systems etc. [1-4].
Phenomena in electromagnetics, acoustics, viscoelasticity, electrochemistry and
material science are also described by differential equations of fractional order
[5-11]. The solution of the differential equation containing fractional derivative
is much involved. Most recently, applications have included classes of nonlinear
fractional differential equations (FDEs) [12] and their numerical solutions have
been established by Diethelm and Ford [13]. Also, the solution of nonlinear frac-
tional differential equation has been obtained through Adomian’s decomposition
method [12] and Variational iteration method [14].

The homotopy perturbation method (HPM) was first proposed by the Chinese
mathematician Ji-Huan He [15-16]. Unlike classical techniques, the homotopy
perturbation method leads to an analytical approximate and exact solutions of
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the nonlinear equations easily and elegantly without transforming the equation.
or linearizing the problem and with high accuracy, minimal calculation and
avoidance of physically unrealistic assumptions. As a numerical tool, the method
provide us with numerical solution without discretization of the given equation,
and therefore, it is not effected by computation round-off errors and one is not
faced with necessity of large computer memory and time. In this paper, we
will HPM for solving a nonlinear equation with Riemann-Liouville’s fractional
derivatives.

2. Mathematical definition

The mathematical definition of fractional calculus has been the main subject
of many different approaches [17]. The left-sided Riemann-Liouville fractional
integral of order q > 0 of a function f (x) is defined as

d−qf (x)

dx−q
=

1

Γ (q)

x∫

0

f (t) dt

(x− t)
1−q , x > 0,

and the Riemann-Liouville’s fractional derivative is defined as

dqf (x)

dxq
=

dn

dxn

(
d−(n−q)f(x)

dx−(n−q)

)
=

1

Γ (n− q)

dn

dxn

x∫

0

f (t) dt

(x− t)
1−n+q ,

where n is an integer that satisfies n− 1 < q < n.

3. Solution of a nonlinear fractional differential equation

As an illustration of the present analysis, let us consider the HPM for solving
the following nonlinear fractional differential equation:

du

dt
+

d1/2u

dt1/2
− 2u2 = 0, (1)

According to HPM, we construct the following homotopy

du

dt
+ p

{
d1/2u

dt1/2
− 2u2

}
= 0, (2)

Assume the solution of Eq. (2) to be in the form:

u = u0 + pu1 + p2u2 + p3u3 + ..., (3)

Substituting (3) into (2) and equating the coefficients of like powers p, we get
the following set of differential equations

p0 :
du0

dt
= 0,

p1 :
du1

dt
+

d1/2u0

dt1/2
− 2u2

0 = 0,
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p2 :
du2

dt
+

d1/2u1

dt1/2
− 4u0u1 = 0,

...

Consequently, the first few terms of the HPM series solution are as follows:

u0 (t) = c,

u1 (t) =
2c~

√
t√

π
− 2c2~t,

u2 (t) =
2c~

√
t√

π
− 2c2~t+ c~2

(
2

√
t√
π
− 2ct+ t− 8ct3/2√

π
+ 4c2t2

)
,

...

and so on. Hence, the HPM series solution is

u (t) = c+

(
2c2t− 2c

√
t√
π

)
+

(
4c3t2 − 8c2t3/2√

π
+ ct

)
+ ... (4)

Now, consider the initial value problem for the nonlinear fractional differential
equation

du

dt
+

d1/2u

dt1/2
− 2u2 = 0, u (0) = 1. (5)

Therefore, the solution of the Eq.(4) is

u (t) = 1 +

(
2t− 2

√
t√
π

)
+

(
4t2 − 8t3/2√

π
+ t

)
+ ... (6)

4. Verification of the solution

We can look for the solution u (t) of the Eq.(5) in the form of the fractional
power series:

u (t) =

∞∑

i=0

uit
1/2, (7)

with u0 = c, where c is a constant. By substituting (7) into (5) and comparing
the coefficients of the results fractional power series, we obtain [12]:
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u (t) = c− 2c
√
t√

π
+
(
c+ 2c2

)
t−

(
8c2√
π
+

4c

3
√
π

)
t3/2

+

[
c

2
+

(
5 +

4

π

)
c2 + 4c3

]
t2

−
[

8c

15
√
π
+

(
32

3
√
π
+

64

15π
√
π

)
c2 +

352c3

15
√
π

]
t5/2 + ......

(8)

5. Numerical examples and discussions

Assuming c = 1 and retaining upto 5th power of tin Eq.(8), the truncated
fractional power series becomes

u (t) = 1− 2
√
t√
π

+ 3t−
(

28

3
√
π

)
t3/2 +

[
19

2
+

4

π

]
t2

−
[
104

3
√
π
+

64

15π
√
π

]
t5/2 + ......

(9)

We compare the solution (4) by HPM with that of Eq.(8) by fractional power
series method and the results are given below in Tables 1-3.

Table 1
Comparison between HPM-2nd order approximation and fractional power se-

ries solution (truncated upto 13-terms)

t(time) HPM-2nd Power series solution(13 terms) Absolute error

0 1 1 0
0.01 0.913049 0.912804 0.000245
0.02 0.889257 0.888937 0.000320
0.03 0.874706 0.874525 0.000181
0.04 0.864616 0.864758 0.000142
0.05 0.857224 0.857839 0.000615
0.06 0.851670 0.852877 0.001207
0.07 0.847467 0.849361 0.001894
0.08 0.844317 0.846971 0.002654
0.09 0.842021 0.845495 0.003474
0.1 0.840445 0.844794 0.004349

Table 2
Comparison between HPM-3rd order approximation and fractional power se-

ries solution (truncated upto 13-terms)
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t(time) HPM-3rd Power series solution(13 terms) Absolute error

0 1 1 0
0.01 0.912799 0.913142 0.000005
0.02 0.888954 0.889583 0.000017
0.03 0.874595 0.874525 0.000070
0.04 0.864911 0.864758 0.000153
0.05 0.858096 0.857839 0.000257
0.06 0.853251 0.852839 0.000374
0.07 0.849854 0.849361 0.000493
0.08 0.847574 0.846971 0.000603
0.09 0.846183 0.845495 0.000688
0.1 0.845522 0.844794 0.000728

Table 3
Comparison between HPM-4th order approximation and fractional power se-

ries solution (truncated upto 13-terms)

t(time) HPM-4th Power series solution(13 terms) Absolute error

0 1 1 0
0.01 0.912803 0.913142 0.000001
0.02 0.888934 0.889583 0.000003
0.03 0.874517 0.874525 0.000008
0.04 0.864746 0.864758 0.000012
0.05 0.857827 0.857839 0.000012
0.06 0.852871 0.852839 0.000006
0.07 0.849369 0.849361 0.000008
0.08 0.846998 0.846971 0.000027
0.09 0.845539 0.845495 0.000044
0.1 0.844840 0.844794 0.000046

From the above three tables we observe that approximate solution is in good
agreement with truncated series solution. Of course the accuracy can be im-
proved by computing more terms in the HPM.

6. Conclusion

The HPM is straightforward, without restrictive assumptions and the com-
ponents of the series solution can be easily computed using any mathematical
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symbolic package. Moreover, this method does not change the problem into a
convenient one for the use of linear theory. It, therefore, provides more realistic
series solutions that generally converge very rapidly in real physical problems.
When solutions are computed numerically, the rapid convergence is obvious.
Moreover, no linearization or perturbation is required.
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