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STRONG CONVERGENCE OF A METHOD FOR

VARIATIONAL INEQUALITY PROBLEMS AND FIXED

POINT PROBLEMS OF A NONEXPANSIVE SEMIGROUP IN

HILBERT SPACES

NGUYEN BUONG

Abstract. In this paper, we introduce a new iteration method based
on the hybrid method in mathematical programming and the descent-like
method for finding a common element of the solution set for a variational
inequality and the set of common fixed points of a nonexpansive semigroup
in Hilbert spaces. We obtain a strong convergence for the sequence gen-
erated by our method in Hilbert spaces. The result in this paper modifies
and improves some well-known results in the literature for a more general
problem.
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1. Introduction

Let H be a real Hilbert space with the scalar product and the norm denoted
by the symbols 〈., .〉 and ‖.‖, respectively, and let C be a nonempty closed and
convex subset of H. Denote by PC(x) the metric projection from x ∈ H onto
C. Let T be a nonexpansive mapping on C, i.e., T : C → C and ‖Tx − Ty‖ ≤
‖x− y‖ for all x, y ∈ C. We use F (T ) to denote the set of fixed points of T , i.e.,
F (T ) = {x ∈ C : x = Tx}. We know that F (T ) is nonempty, if C is bounded,
for more details see [3].

For finding a fixed point of a nonexpansive mapping T on C, Ishikawa [12]
proposed the following method:

x0 ∈ C any element,

yk = αkxk + (1− αk)Txk,

xk+1 = βkxk + (1− βk)Tyk,

(1.1)
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where {αk} and {βk} are two sequences of positive real numbers. When αk = 1
for all k ≥ 0, we have the iterative process:

x0 ∈ C any element,

xk+1 = βkxk + (1− βk)Txk,
(1.2)

Introduced by Mann [15] in 1953. Both processes (1.1) and (1.2) have only weak
convergence, in general (see [7] for an example). The formulation of process
(1.2) is simpler than that of (1.1) and a convergence theorem for process (1.2)
may possibly lead to a convergence theorem for (1.1) provided the sequence {αk}
satisfies certain appropriate conditions. However, the introduction of the process
(1.1) has its own right. As a matter of fact, process (1.2) may fail to convergence
while process (1.1) can still converge for a Lipschitz pseudocontractive mapping
[5].

Recently, Alber [2] proposed the following descent-like iteration method:

xk+1 = PC(xk − µk(xk − Txk)), ∀k ≥ 0, x0 ∈ C,

and proved that: if µk > 0,
∑∞

k=0 µ
2
k < ∞ and {xk} is bounded, then

(i) there exists a weak accumulation point x̃ ∈ C of {xk};
(ii) all weak accumulation points of {xk} belong to F (T );
(iii) if F (T ) is a singleton, i.e., F (T ) = {x̃}, then {xk} converges weakly to x̃.

Obviously, to find a fixed point of mapping T is equivalent to finding a zero
for a mapping I − T which is a monotone Lipschitz continuous mapping, where
I denotes the identity mapping of H.

Recall that a mapping A in H is said to be:

(i) Lipschitz continuous with a Lipschitz constant L > 0 or L-Lipschitz contin-
uous, if

‖Ax−Ay‖ ≤ L‖x− y‖;
(ii) monotone, if

〈Ax−Ay, x− y〉 ≥ 0, ∀x, y ∈ D(A),

the domain of A; and maximal monotone, if G(A), the graph of A, is not properly
contained in the graph of any other monotone mapping.

For finding a zero of the following inclusion

0 ∈ Ax (1.3)

involving a maximal monotone mappingA, Rockafellar [24] considered the method:

cnAxn+1 + xn+1 = xn, x0 ∈ H, (1.4)

where cn > c0 > 0, which is called the proximal point algorithm, and posed an
open question whether (or not) the proximal algorithm (1.4) always converges
strongly. This question was resolved in the negative by Güler [9]. To obtain
strong convergence Solodov and Svaiter [27] proposed the following algorithm.
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Algorithm: Choose any x0 ∈ H and σ ∈ [0, 1). At iteration k, having xk,
choose µk > 0 and

vk ∈ Ayk, vk + µk(yk − xk) = εk,

‖εk‖ ≤ σmax{‖vk‖, µk‖yk − xk‖},
Hk = {z ∈ H : 〈z − yk, vk〉 ≤ 0},
Wk = {z ∈ H : 〈z − xk, x0 − xk〉 ≤ 0},

xk+1 = PHk∩Wk
(x0).

(1.5)

They proved that if the sequence of regularization parameters {µk} is bounded

from above, then {xk} converges strongly to z0 = PS̃(x0), where S̃ denotes the
set of solutions of (1.3). Moreover, basing on an important property that Hk

and Wk in (1.5) are two halfspaces, they showed that

xk+1 = x0 + λ1vk + λ2(x0 − xk), (1.6)

where λ1, λ2 is the solution of the linear system of two equations with two
unknowns

λ1‖vk‖2 + λ2〈vk, x0 − xk〉 = −〈x0 − xk, vk〉
λ1〈vk, x0 − xk〉+ λ2‖x0 − xk‖2 = −‖x0 − xk‖2.

(1.7)

Further, for finding a fixed point for a nonexpansive mapping on C, motivated
by the Solodov and Svaiter’s algorithm, Nakajo and Takahashi [21] considered
the sequence {xk} generated by

x0 ∈ C,

yk = αkxk + (1− αk)Txk,

Ck = {z ∈ C : ‖z − yk‖ ≤ ‖z − xk‖},
Qk = {z ∈ C : 〈z − xk, x0 − xk〉 ≤ 0},

xk+1 = PCk∩Qk
(x0), k ≥ 0,

(1.8)

where {αk} ⊂ [0, a] for some a ∈ [0, 1). They showed that {xk} converges
strongly to PF (T )(x0). Process (1.8) is called [11] a CQ method for the Mann
iteration process because at each step the Mann iterate (denoted by yk in (1.8))
is used to construct the sets Ck and Qk which are in turn used to construct the
next iterate xk+1 and hence the name. Yanes and Xu [17] extended Nakajo and
Takahash’s iteration process (1.8) to the Ishikawa iteration process and (1.8)
with yk = αkx0 + (1 − αk)Txk. Marino and Xu [16] further suggested the
following modified Mann’s algorithm based on the CQ method which has been
studied by some others (see, [1, 10, 13, 28-30]):

x0 ∈ C,

yk = αkxk + (1− αk)Txk,

Ck = {z ∈ C : ‖z − yk‖2 ≤ ‖z − xk‖2 + (1− αk)(γ − αk)‖xk − Txk‖2},
Qk = {z ∈ C : 〈z − xk, x0 − xk〉 ≤ 0},

xk+1 = PCk∩Qk
(x0),

(1.9)
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for finding a fixed point of γ-strictly pseudocontractive mapping T , i.e., T
satisfies the following condition

‖Tx− Ty‖2 ≤ ‖x− y‖2 + γ‖(I − T )x− (I − T )y‖2 (1.10)

for all x, y ∈ C and γ ∈ [0, 1) is a fixed number. Recently, to find a fixed point
of a γ-trictly pseudocontractive mapping T on C, Yao and Chen [32] proposed
the following algorithm:

x0 ∈ C,

yk = αkxk + (1− αk)[δxk + (1− δ)Txk],

Ck = {z ∈ C : ‖z − yk‖ ≤ ‖z − xk‖},
Qk = {z ∈ C : 〈z − xk, x0 − xk〉 ≤ 0},

xk+1 = PCk∩Qk
(x0),

(1.11)

where δ ∈ (γ, 1). They proved that if T : C → C is a γ-strict pseudo-contraction
for some 0 ≤ γ < 1 with F (T ) 6= ∅ and the sequence {αk} is chosen so that
αk < 1 for all k ≥ 0, then {xk} defined by (1.11) converges strongly to PF (T )(x0).

It is clear that (1.10) is equivalent to

〈Tx− Ty, x− y〉 ≤ ‖x− y‖2 − 1− γ

2
‖(I − T )x− (I − T )y‖2

for all x, y ∈ C. So, the mapping A := I − T satisfies the following condition

〈Ax−Ay, x− y〉 ≥ λ‖Ax−Ay‖2, λ =
1− γ

2
, (1.12)

and usually, a mapping A satisfying (1.12) is called λ-inverse strongly monotone.
Moreover, it is well-known [11] that p ∈ F (T ) if and only if p ∈ ΩA, the solution
set of the following variational inequality problem: find an element x∗ ∈ C such
that

〈Ax∗, x− x∗〉 ≥ 0 ∀x ∈ C,

and if T is nonexpansive (γ = 0), then I−T is (1/2)-inverse strongly monotone.
Further, Takahashi and Toyota [31] considered the problem of finding a solu-

tion of the variational inequality which is also a fixed point of some mapping.
More precisely, given a nonempty closed convex subset C of H, a nonexpansive
mapping T on C and an λ-inverse strongly monotone mapping A : C → H, in
order to find an element p ∈ F (T ) ∩ΩA, they introduced the following iterative
scheme:

x0 ∈ C,

xk+1 = αkxk + (1− αk)TPC(xk − λkAxk),
(1.13)

for all k ≥ 0, where {αk} is a sequence in (0, 1) and {λk} is a sequence in (0, 2λ).
They showed that if F (T ) ∩ ΩA 6= ∅, then the sequence {xk} defined by (1.13)
converges weakly to some point p ∈ F (T ) ∩ ΩA. Later on, in order to achieve
strong convergence to an element p ∈ F (T )∩ΩA under the same assumptions, by
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using a hybrid method, Iiduka and Takahashi [11] modified the iterative scheme
as follows:

x0 ∈ C,

yk = αkxk + (1− αk)TPC(xk − λkAxk),

Ck = {z ∈ C : ‖z − yk‖ ≤ ‖z − xk‖},
Qk = {z ∈ C : 〈z − xk, x0 − xk〉 ≤ 0},

xk+1 = PCk∩Qk
(x0),

(1.14)

for all k ≥ 0, where 0 ≤ αk ≤ c < 1 and 0 < a ≤ λk ≤ b < 2λ. They proved that
if F (T ) ∩ ΩA 6= ∅, then the sequence {xk} defined by (1.14) converges strongly
to PF (T )∩ΩA

(x0). To overcome the restriction of the above methods to the class
of λ-inverse strongly monotone mappings, by using the extragradient method of
Korpelevich [14], Nadezhkina and Takahashi [19] were able to show the weak
convergence result of the following method:

x0 ∈ C,

yk = PC(xk − λkAxk),

xk+1 = αkxk + (1− αk)TPC(xk − λkAyk),

for mappings A that are only supposed to be monotone and Lipschitz continuous.
Recently, for finding an element of F (T ) ∩ ΩA, by combining a hybrid-type

method with an extragradient method, Nadezhkina and Takahashi [20] intro-
duced the following iterative method:

x0 ∈ C,

yk = PC(xk − λkAxk),

zk = αkxk + (1− αk)TPC(xk − λkAyk),

Ck = {z ∈ C : ‖z − yk‖ ≤ ‖z − xk‖},
Qk = {z ∈ C : 〈z − xk, x0 − xk〉 ≤ 0},

xk+1 = PCk∩Qk
(x0),

(1.15)

for all k ≥ 0. Under the following conditions: {αk} ⊂ [a, b] for some a, b ∈
(0; 1/L) and {λk} ⊂ [0, c] for some c ∈ [0, 1), the sequences {xk}, {yk} and {zk}
defined by (1.15) converge strongly to the same point p = PF (T )∩ΩA

(x).

Very recently, Ceng, Hadjisavvas andWong [4] considered the following method:

x0 ∈ C,

yk = (1− γk)xk + γkPC(xk − λkAxk),

zk = (1− αk − βk)xk + αkyk + βkTPC(xk − λkAyk),

Ck = {z ∈ C : ‖z − zk‖ ≤ ‖z − xk‖+ (3− 3γk + αk)b
2‖Axk‖2},

Qk = {z ∈ C : 〈xk − z, x0 − xk〉 ≥ 0},
xk+1 = PCk∩Qk

(x0),

(1.16)
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for all k ≥ 0, where {λk} ⊂ [a, b] with a > 0 and b < 1/(2L), and {αk}, {βk}, {γk}
are three sequences in [0, 1] satisfying the conditions:

(i) αk + βk < 1 for all k ≥ 0;
(ii) limk→∞ αk = 0;
(iii) lim infk→∞ βk > 0;
(iv) limk→∞ γk = 1 and γk > 3/4 for all k ≥ 0;

Let {T (s) : s > 0} be a nonexpansive semigroup on a closed convex subset C,
that is,

(1) for each s > 0, T (s) is a nonexpansive mapping on C;
(2) T (0)x = x for all x ∈ C;
(3) T (s1 + s2) = T (s1) ◦ T (s2) for all s1, s2 > 0;
(4) for each x ∈ C, the mapping T (.)x from (0,∞) into C is continuous.

Denote by F = ∩s>0F (T (s)). We know [21] that F is a closed convex subset
in H and F 6= ∅ if C is compact (see [6]).

For finding an element p ∈ F , Shioji and Takahashi [26] introduced the im-
plicit iteration method:

xk = αku+ (1− αk)
1

sk

∫ sk

0

T (s)xkds, k ≥ 0,

where {αk} is a sequence in (0,1) and {sk} is a positive real number diver-
gent sequence. Further, Nakajo and Takahashi [21] introduced also an iteration
procedure for the nonexpansive semigroup as follows:

x0 ∈ C,

yk = αkxk + (1− αk)
1

sk

∫ sk

0

T (s)xkds,

Ck = {z ∈ C : ‖yk − z‖ ≤ ‖xk − z‖},
Qk = {z ∈ C : 〈xk − z, x0 − xk〉 ≥ 0},

xk+1 = PCk∩Qk
(x0)

(1.17)

for each k ≥ 0. They showed that if αk ∈ [0,a] for some a ∈ [0,1) and {sk} is
a positive real number divergent sequence, then the sequence {xn} defined by
(1.17) converges strongly to PF (x0).

In 2007, He and Chen [10] considered an iteration procedure for any nonex-
pansive semigroup {T (s) : s > 0} on C as follows:

x0 ∈ C,

yk = αkxk + (1− αk)T (sk)xk,

Ck = {z ∈ C : ‖yk − z‖ ≤ ‖xk − z‖},
Qk = {z ∈ C : 〈xk − z, x0 − xk〉 ≥ 0},

xk+1 = PCk∩Qk
(x0)

(1.18)
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for k ≥ 0, where αk ∈ [0, a) for some a ∈ [0, 1) and sk ≥ 0, limk→∞ sk = 0, then
the sequence {xk} in (1.18) converges to PF (x0). In 2008 Saejung [25] proved
the result under new condition on sk:

lim inf
k
sk = 0, lim sup

k
sk > 0 and lim

k
(sk+1 − sk) = 0. (1.19)

It is easy to see that if C is a proper subset of H, then Ck and Qk are not
two halfspaces. Then, a natural question is posed: how to construct the closed
convex subsets Ck and Qk for a fixed closed convex subset C and if we can
express xk+1 in (1.8), (1.9), (1.11) and (1.14)-(1.18) in a similar form as (1.6)
and (1.7). Obviously, the answer is positive, if Ck and Qk in these methods
are also two halfspaces. In this paper, this idea is used to solve a more general
problem, the problem of finding an element

p ∈ F ∩ ΩA, (1.20)

assumed to be nonempty, for any monotone Lipschitz continuous mapping A
and a nonexpansive semigroup {T (s) : s > 0} on C.

Motivated by Alber’s algorithm, (1.15) and (1.16), to solve (1.20) we consider
the following algorithm:

x0 ∈ H,

yk = PC(xk − λkAPC(xk)),

zk = xk − µk[xk − TkPC(xk − λkAyk)],

Hk = {z ∈ H : ‖zk − z‖ ≤ ‖xk − z‖},
Wk = {z ∈ H : 〈xk − x0, z − xk〉 ≥ 0},

xk+1 = PHk∩Wk
(x0), k ≥ 0,

(1.21)

where {sk} is a sequence of positive real numbers satisfying condition (1.19) and
Tkx = T (sk)x for x ∈ C. The strong convergence of algorithm (1.21) is proved
in the next section. Some applications are showed in Section 3.

2. Main results

We formulate some facts needed in the proof of our results.
Definition 2.1. A Banach space E is said to satisfy Opial’s condition [22] if
whenever {xk} is a sequence in E which converges weakly to x, as k → ∞, then

lim sup
k→∞

‖xk − x‖ < lim sup
k→∞

‖xk − y‖, ∀y ∈ E with x 6= y.

It is well known that Hilbert space and lp(1 < p < ∞) satisfy Opial’s condition
[18].

Lemma 2.2 [16]. Let H be a real Hilbert space H. There hold the following
identities:
(i) ‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2〈x, y〉;
(ii) ‖tx+(1− t)y‖2 = t‖x‖2+(1− t)‖y‖2− t(1− t)‖x−y‖2,∀t ∈ [0, 1],∀x, y ∈ H;
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(iii) ‖x− y‖2 ≥ ‖x− PC(x)‖2 + ‖y − PC(x)‖2 for any x ∈ H and for all y ∈ C
where C is a nonempty closed convex subset in H.

Lemma 2.3 [16]. Let C be a nonempty closed convex subset of a real Hilbert
space H. For any x ∈ H, there exists a unique z ∈ C such that ‖z−x‖ ≤ ‖y−x‖
for all y ∈ C, and z = PC(x) if and only if 〈z − x, y − z〉 ≥ 0 for all y ∈ C,
where PC is the metric projection of H onto C.

Lemma 2.4 [8]. Every Hilbert space H has Randon-Riesz property or Kadec-
Klee property, that is, for a sequence {xn} ⊂ H with xn ⇀ x and ‖xn‖ → ‖x‖,
then there hodls xn → x.

Theorem 2.5. Let C be a nonempty closed convex subset in a real Hilbert
space H. Let A : C → H be a monotone L-Lipschitz continuous mapping and
let {T (s) : s > 0} be a nonexpansive semigroup on C such that F ∩ ΩA 6=
∅. Let {λk} ⊂ [a, b] for some a, b ∈ (0; 1/L), {sk} be a sequence of positive
real numbers satisfying (1.19) and {µk} ⊂ [c, 1] for some c ∈ (0, 1). Then, the
sequences {xk}, {yk} and {zk} defined by (1.21) converge strongly to the same
point z0 = PF∩ΩA(x0).

Proof. First, note that ‖zk − z‖ ≤ ‖xk − z‖ is equivalent to

〈zk − xk, xk − z〉 ≤ −1

2
‖zk − xk‖2.

Thus, Hk is a halfspace. For each u ∈ F ∩ΩA, by putting tk = PC(xk −λkAyk)
and using (iii) and (i) in Lemma 2.2 with x = xk − λkAyk and y = u ∈ ΩA ⊆ C
we have that

‖tk − u‖2 ≤ ‖xk − λkAyk − u‖2 − ‖xk − λkAyk − tk‖2
= ‖xk − u‖2 − ‖xk − tk‖2 + 2λk〈Ayk, u− tk〉
≤ ‖xk − u‖2 − ‖xk − tk‖2 + 2λk〈Ayk, yk − tk〉
= ‖xk − u‖2 − ‖xk − yk‖2 − ‖yk − tk‖2
+ 2〈xk − λkAyk − yk, tk − yk〉.

(2.1)

Next, by using Lemma 2.3 with x = xk − λkAPC(xk), z = yk and y = tk, we get

2〈xk − λkAyk − yk, tk − yk〉 = 2〈xk − λkAPC(xk)− yk, tk − yk〉
+ 2λk〈APC(xk)−Ayk, tk − yk〉

≤ 2λkL‖PC(xk)− PC(yk)‖‖yk − tk‖
≤ 2λkL‖xk − yk‖‖yk − tk‖,

(2.2)

since yk ∈ C. Therefore, from (2.1), (2.2) and the condition on λk we obtain the
estimation

‖tk − u‖2 ≤ ‖xk − u‖2 + (λ2
kL

2 − 1)‖xk − yk‖2
≤ ‖xk − u‖2, (2.3)
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and hence
‖zk − u‖2 = ‖(1− µk)(xk − u) + µk(Tktk − u)‖2

≤ (1− µk)‖xk − u‖2 + µk‖Tktk − u‖2
≤ (1− µk)‖xk − u‖2 + µk‖tk − u‖2
≤ (1− µk)‖xk − u‖2 + µk‖xk − u‖2
≤ ‖xk − u‖2.

(2.4)

It means that F ∩ ΩA ⊂ H‖ for all k ≥ 0. On the other hand, when k = 0 we
have W0 = H. Consequently, F ∩ ΩA ⊂ W′. We shall prove by mathematical
induction that F ∩ΩA ⊂ W‖ for all k ≥ 0. Assume that F ∩ΩA ⊂ W〉, we have
to prove that F ∩ΩA ⊂ W〉+∞. Indeed, since F ∩ΩA ⊂ W〉 there exists a unique
element xi+1 ∈ Hi ∩Wi such that xi+1 = PHi∩Wi(x0) and for all z ∈ Hi ∩Wi

we have that 〈xi+1 − z, x0 − xi+1〉 ≥ 0. Hence, z ∈ Wi+1. Finally, we have that
F ∩ ΩA ⊂ H‖ ∩W‖ for all k ≥ 0.

Note that we also have from xk+1 = PHk∩Wk
(x0) that

‖xk+1 − x0‖ ≤ ‖u− x0‖ (2.5)

for all u ∈ F∩ΩA. Thus, {xk} is bounded and hence {APC(xk)} is also bounded.
From xk = PWk

(x0) and xk+1 ∈ Hk ∩Wk it follows

‖xk − x0‖ ≤ ‖xk+1 − x0‖.
This fact and the bounded property of {xk} imply that there exists limk→∞ ‖xk−
x0‖ = c. Since xk = PWk

(x0) and xk+1 ∈ Wk, from (ii) in Lemma 2.2 we have

‖xk − x0‖2 ≤ ‖(xk + xk+1)/2− x0‖2
= ‖(xk − x0)/2 + (xk+1 − x0)/2‖2
= ‖xk − x0‖2/2 + ‖xk+1 − x0‖2/2− ‖xk − xk+1‖2/4.

So, we get

‖xk − xk+1‖2 ≤ 2(‖xk+1 − x0‖2 − ‖xk − x0‖2).
Since limk→∞ ‖xk − x0‖ = c, we obtain

lim
k→∞

‖xk − xk+1‖ = 0. (2.6)

From xk+1 ∈ Hk it implies that

‖zk − xk‖ ≤ ‖xk − xk+1‖+ ‖xk+1 − zk‖ ≤ 2‖xk − xk+1‖.
By (2.6), we obtain

lim
k→∞

‖zk − xk‖ = 0. (2.7)

Further, from (2.4) it follows

‖zk − xk‖2 + 2〈zk − xk, xk − u〉 ≤ µk(‖Tktk − u‖2 − ‖xk − u‖2) ≤ 0.

So, we have from (2.7) and the boundedness of {xk} that

lim
k→∞

µk(‖Tktk − u‖2 − ‖xk − u‖2) = 0.
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Since µk ∈ [c, 1], we get

lim
k→∞

(‖Tktk − u‖2 − ‖xk − u‖2) = 0.

Next, from (2.3), the last equality and

lim
k→∞

(‖Tktk − u‖2 − ‖xk − u‖2) ≤ lim
k→∞

(‖tk − u‖2 − ‖xk − u‖2) ≤ 0

it implies that

lim
k→∞

(‖xk − u‖2 − ‖tk − u‖2) = 0.

Therefore, we have from (2.3), the last equality and 1 − λ2
kL

2 > 1 − b2L2 > 0
that

lim
k→∞

‖xk − yk‖ = 0. (2.8)

By the similar argument, we also obtain from (2.1) and (2.2) that

‖tk − u‖2 ≤ ‖xk − u‖2 + (λ2
kL

2 − 1)‖yk − tk‖2
≤ ‖xk − u‖2,

and hence

lim
k→∞

‖yk − tk‖ = 0. (2.9)

Further, we have from (2.8), (2.9) and the Lipschitz continuity of A that

lim
k→∞

‖Ayk −Atk‖ = lim
k→∞

‖xk − tk‖ = 0.

Since {xk} is bounded, there exist an element z ∈ H and a subsequence {xki}
of {xk} such that {xki} converges weakly to z as i → ∞. Thus, {yki} and {tki}
also converges weakly to z as i → ∞. Since {tki} ⊂ C and C is a closed convex
subset, we have z ∈ C. Now, we shall prove that z ∈ F ∩ ΩA. First, we show
that z ∈ ΩA. Set Bv = Av +NCv for v ∈ C where

NCv = {w ∈ H : 〈v − y, w〉 ≥ 0 ∀y ∈ C}
and Bv = ∅ for v /∈ C. Then, B is a maximal monotone mapping and 0 ∈ Bv
if and only if v ∈ ΩA (see [23]). Let (v, w) ∈ G(B). Then we have w ∈ Bv =
Av +NCv and w −Av ∈ NCv which is equivalent to

〈v − y, w −Av〉 ≥ 0 ∀y ∈ C.

Consequently, from tk = PC(xk − λkAyk) ∈ C and Lemma 2.3, we have that

〈tk − v, xk − λkAyk − tk〉 ≥ 0.

Therefore,

〈v − tk, (tk − xk)/λk +Ayk〉 ≥ 0.
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Hence,

〈v − tki , w〉 ≥ 〈v − tki , Av〉
≥ 〈v − tki

, Av〉 − 〈v − tki
, (tki

− xki
)/λki

+Ayki
〉

≥ 〈v − tki
, Av −Atki

〉+ 〈v − tki
, Atki

−Ayki
〉

+ 〈v − tki
, (tki

− xki
)/λki

〉
≥ 〈v − tki

, Atki
−Ayki

〉+ 〈v − tki
, (tki

− xki
)/λki

〉
After passing i → ∞ in the last inequality, we obtain that 〈v − z, w〉 ≥ 0 for all
v ∈ C. So, z ∈ B−10. It means that z ∈ ΩA.

Next, we prove that z ∈ F . From (1.21), (2.7) and the condition on {λk} it
follows

c lim
k→∞

‖Tktk − xk‖ ≤ lim
k→∞

µk‖Tktk − xk‖ = lim
k→∞

‖zk − xk‖ = 0. (2.10)

From (2.8)-(2.10), we get

lim
k→∞

‖Tktk − tk‖ = 0.

Without loss of generality, as in [25], let

lim
j→∞

skj = lim
j→∞

‖Tkj tkj − tkj‖
skj

= 0. (2.11)

Now, we prove that z = T (s)z for a fixed s > 0. It is easy to see that

‖tkj − T (s)z‖ ≤
[s−skj

]−1∑
l=0

‖T (lskj )tkj − T ((l + 1)skj )tkj

+

∥∥∥∥T
([

s

skj

])
tkj − T

([
s

skj

])
z

∥∥∥∥+
∥∥∥∥T

([
s

skj

])
z − T (s)z

∥∥∥∥

≤
[

s

skj

]
‖tkj − T (skj )tkj‖+ ‖tkj − z‖+

∥∥∥∥T
(
t−

[
s

skj

]
skj

)
z − z

∥∥∥∥.

Therefore,

‖tkj − T (s)z‖ ≤ s

skj

‖tkj − T (skj )tkj‖

+ ‖tkj − z‖+ sup{‖T (s)z − z‖ : 0 ≤ s ≤ skj}.
This fact and (2.11) imply that

lim sup
j→∞

‖tkj − T (s)z‖ ≤ lim sup
j→∞

‖tkj − z‖.

As every Hilbert space satisfies Opial’s condition, we have T (s)z = z. Therefore,
z ∈ F . Thus, (2.5) and the weakly lower semicontinuity of the norm guarantee
that

‖x0 − z0‖ ≤ ‖x0 − z‖ ≤ lim inf
j→∞

‖x0 − xkj‖ ≤ lim sup
j→∞

‖x0 − xkj‖ ≤ ‖x0 − z0‖.
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Hence, we obtain

lim
j→∞

‖xkj
− x0‖ = ‖x0 − z‖ = ‖x0 − z0‖.

By Lemma 2.4, we have that

lim
j→∞

xkj = z0.

Since z0 is a unique element, we have that all the sequence {xk} converges
strongly to z0 as k → ∞. Therefore, the sequences {yk} and {zk} also converge
strongly to z0. Theorem is proved.

3. Applications

If one puts T (s) = T for all s > 0 in Theorem 2.5, then one obtains an
algorithm to find a common element of the set F (T ) ∩ ΩA by

Theorem 3.1. Let C be a nonempty closed convex subset in a real Hilbert space
H. Let A : C → H be a monotone L-Lipschitz continuous mapping and T be a
nonexpansive mapping on C such that F (T )∩ΩA 6= ∅. Let {xk}, {yk} and {zk}
be sequences generated by:

x0 ∈ H,

yk = PC(xk − λkAPC(xk)),

zk = xk − µk[xk − TPC(xk − λkAyk)],

Hk = {z ∈ H : ‖zk − z‖ ≤ ‖xk − z‖},
Wk = {z ∈ H : 〈xk − x0, z − xk〉 ≥ 0},

xk+1 = PHk∩Wk
(x0).

(3.1)

for all k ≥ 0, where {λk} ⊂ [a, b] for some a, b ∈ (0; 1/L), {µk} ⊂ [c, 1] for some
c ∈ (0, 1). Then, the sequences {xk}, {yk} and {zk} defined by (3.1) converge
strongly to the same point z0 = PF (T )∩ΩA

(x0).

Taking T (s) = I for all s > 0 in Theorem 3.1, one finds the following theorem
providing an algorithm to find the solution of a variational inequality.

Theorem 3.2. Let C be a nonempty closed convex subset in a real Hilbert space
H. Let A : C → H be a monotone L-Lipschitz continuous mapping such that
ΩA 6= ∅. Let {xk}, {yk} and {zk} be sequences generated by:

x0 ∈ H,

yk = PC(xk − λkAPC(xk)),

zk = xk − µk(xk − PC(xk − λkAyk)),

Hk = {z ∈ H : ‖zk − z‖ ≤ ‖xk − z‖},
Wk = {z ∈ H : 〈xk − x0, z − xk〉 ≥ 0},

xk+1 = PHk∩Wk
(x0).

(3.2)
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for all k ≥ 0, where {λk} ⊂ [a, b] for some a, b ∈ (0; 1/L), {µk} ⊂ [c, 1] for some
c ∈ (0, 1). Then, the sequences {xk}, {yk} and {zk} defined by (3.2) converge
strongly to the same point z0 = PΩA(x0).

If one puts A = 0 and T (s) = T for all s > 0 in Theorem 3.1, then one obtains
an algorithm to find the fixed point of a nonexpansive mapping.

Theorem 3.3. Let C be a nonempty closed convex subset in a real Hilbert space
H. Let T be a nonexpansive mapping on C such that F (T ) 6= ∅. Let {xk} and
{zk} be sequences generalized by:

x0 ∈ H,

zk = xk − µk(xk − TPC(xk)),

Hk = {z ∈ H : ‖zk − z‖ ≤ ‖xk − z‖},
Wk = {z ∈ H : 〈xk − z, x0 − xk〉 ≥ 0},

xk+1 = PHk∩Wk
(x0).

(3.3)

for all k ≥ 0, where {µk} ⊂ [c, 1] for some c ∈ (0, 1). Then, the sequences {xk}
and {zk} defined by (3.3) converge strongly to the same point z0 = PF (T )(x0).
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