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Abstract. The purpose of this paper is to prove strong convergence theo-
rems for finding a common element of the set of fixed points of a weak
relatively nonexpansive mapping and the set of solutions of the varia-
tional inequality for an inverse-strongly-monotone mapping by a new hy-
brid method in a Banach space. We shall give an example which is weak
relatively nonexpansive mapping but not relatively nonexpansive mapping
in Banach space l2. Our results improve and extend the corresponding
results announced by Ying Liu[Ying Liu, Strong convergence theorem for
relatively nonexpansive mapping and inverse-strongly-monotone mapping
in a Banach space, Appl. Math. Mech. -Engl. Ed. 30(7)(2009), 925-932]
and some others.
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1. Introduction

Let E be a Banach space with dual E∗, ‖ · ‖ denote the norm, and 〈x, f〉
denote the value of f ∈ E∗ at x ∈ E. Suppose that C is a nonempty closed
convex subset of E and A is a monotone operator of C into E∗. Then, we study
a variational inequality problem [1]: Find a point u ∈ C such that

〈v − u,Au〉 ≥ 0, ∀v ∈ C.

The set of solutions of the variational inequality problem is denoted by V I(C,A).
An operator A of C into E∗ is said to be α-inverse-strongly-monotone [2-3], if
there exists a positive real number α such that

〈x− y,Ax−Ay〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C.
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If A is an α-inverse-strongly-monotone mapping, then it is obvious that A is
1
α -Lipschitz continuous. A mapping T : C → C is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖

for every x, y ∈ C .
In 2005, Iiduka and Takahashi [4] proved strong convergence theorems for

finding a common element of the set of solutions of the variational inequality
problem for an inverse-strongly- monotone mapping and the set of fixed points
of a nonexpansive mapping in a Hilbert space. In the meantime, Matsushita
and Takahashi [5] proved a strong convergence theorem for relatively nonexpan-
sive mappings in a Banach space using the hybrid method. Later, Iiduka and
Takahashi [3] proved a weak convergence theorem for finding a solution of the
variational inequality problem with an operator A that satisfies the following
conditions in a two-uniformly convex and uniformly smooth Banach space E:
(A1) A is a α-inverse-strongly-monotone;
(A2) V I(C,A) 6= ∅;
(A3) ‖Ay‖ ≤ ‖Ay −Au‖ for all y ∈ C and u ∈ V I(C,A).

Recently, Iiduka and Takahashi [2] also introduced a hybrid type method
for finding a solution of the variational inequality problem with an operator A
satisfying (A1)-(A3) in a two-uniformly convex and uniformly smooth Banach
space.

In 2009, Ying Liu [9] established a hybrid method for finding a common
element of the set of solutions of a variational inequality problem and the set of
fixed points of a relatively nonexpansive mapping in a Banach space.

Inspired and motivated by these results above, The purpose of this paper is
to prove strong convergence theorems for finding a common element of the set
of fixed points of a weak relatively nonexpansive mapping and the set of solu-
tions of the variational inequality for an inverse-strongly-monotone mapping by
a new hybrid method in a Banach space. We shall give an example which is
weak relatively nonexpansive mapping but not relatively nonexpansive mapping
in Banach space l2. Our results improve and extend the corresponding results
announced by Ying Liu[Ying Liu, Strong convergence theorem for relatively non-
expansive mapping and inverse-strongly-monotone mapping in a Banach space,
Appl. Math. Mech. -Engl. Ed. 30(7), 925-932 (2009) DOI: 10.1007/s10483-
009-0711-y] and some others.

2. Preliminaries

A multi-valued operator T : E → 2E
∗
with domain D(T ) = {z ∈ E : Tz 6=

∅} and range R(T ) = ∪{Tz ∈ E∗ : z ∈ D(T )} is said to be monotone if
〈x1 − x2, y1 − y2〉 ≥ 0 for each xi ∈ D(T ) and yi ∈ Txi, i = 1, 2. A monotone
operator T is said to be maximal if its graph G(T ) = {(x, y) : y ∈ Tx} is not
properly contained in the graph of any other monotone operator.
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We define a function δ : [0, 2] → [0, 1], called the modulus of convexity of E,
as follows:

δ(ε) = inf{1− ‖x+ y

2
‖ : x, y ∈ U, ‖x− y‖ ≥ ε}.

Then, E is uniformly convex if and only if δ(ε) > 0 for all ε ∈ (0, 2]. Let p be
a fixed real number with p ≥ 2. A Banach space E is said to be p-uniformly
convex if there exists a constant c > 0 such that δ(ε) ≥ cεp for all ε ∈ (0, 2].

It is also very well known that if C is a nonempty closed convex subset of
a Hilbert space H and PC : H → C is the metric projection of H onto C,
then PC is nonexpansive. This fact actually characterizes Hilbert spaces C
and consequently, it is not available in more general Banach spaces. In this
connection, Alber [22] recently introduced a generalized projection operator ΠC

in a Banach space E which is an analogue of the metric projection in Hilbert
spaces.

Next, we assume that E is a real smooth Banach space. Let us consider the
functional defined as [20,21] by

φ(y, x) = ‖y‖2 − 2〈y, Jx〉+ ‖x‖2 (2.1)

for all x, y ∈ E. Observe that, in a Hilbert space H, (2.1) reduces to φ(y, x) =
‖x− y‖2, x, y ∈ H.

The generalized projection ΠC : E → C is a map that assigns to an arbitrary
point x ∈ E the minimum point of the functional φ(x, y), that is, ΠCx = x,
where x is the solution to the minimization problem

φ(x, x) = min
y∈C

φ(y, x), (2.2)

existence and uniqueness of the operator ΠC follow from the properties of the C
functional φ(x, y) and strict monotonicity of the mapping J (see, for example,
[22-24]). In Hilbert spaces, ΠC = PC . It is obvious from the definition of
function φ that

(‖y‖ − ‖x‖)2 ≤ φ(y, x) ≤ (‖y‖+ ‖x‖)2 (2.3)

for all x, y ∈ E.

Remark 1. If E is a reflexive strictly convex and smooth Banach space, then
for x, y ∈ E, φ(x, y) = 0 if and only if x = y. It is sufficient to show that
if φ(x, y) = 0 then x = y. From (2.3), we have ‖x‖ = ‖y‖. This implies
〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definitions of J , we have Jx = Jy. That is,
x = y; see [23,24] for more details.

A Banach space E is said to have the Kadec-Klee property if a weakly conver-
gent sequence {xn} in E with limit x0 ∈ E satisfies that limn→∞ ‖xn‖ = ‖x0‖,
then {xn} converges strongly to x0. It is obvious that if E is uniformly convex,
E has the Kadec-Klee property.

Let C be a nonempty closed convex subset of E, and let T be a mapping from
C into itself. We denote by F (T ) the set of fixed points of T .
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A point p in C is said to be an asymptotic fixed point of T if C contains a
sequence {xn} which converges weakly to p such that limn→∞ ‖Txn − xn‖ = 0.

The set of asymptotic fixed point of T will be denoted by b F̂ (T ).
A mapping T of C into itself is said to be relatively nonexpansive [5,10,11] if

the following conditions are satisfied:
(1)F (T ) is nonempty;
(2)φ(u, Tx) ≤ φ(u, x), ∀u ∈ F (T ), x ∈ C;

(3)F̂ (T ) = F (T ).
The hybrid algorithms for fixed point of relatively nonexpansive mappings and
applications have been studied by many authors, for example [10-15].

A point p in C is said to be a strong asymptotic fixed point of T [16,17] if C
contains a sequence {xn} which converges strongly to p such that limn→∞ ‖Txn−
xn‖ = 0. The set of strong asymptotic fixed points of T will be denoted by F̃ (T ).
A mapping T from C into itself is called weak relatively nonexpansive if

(1)F (T ) is nonempty;
(2)φ(u, Tx) ≤ φ(u, x), ∀u ∈ F (T ), x ∈ C;

(3)F̃ (T ) = F (T ).

Remark 2. In [17], the weak relatively nonexpansive mapping is also said to
be relatively weak nonexpansive mapping.

Remark 3. In [18], the authors have given the definition of hemi-relatively
nonexpansive mapping as follows. A mapping T from C into itself is called
hemi-relatively nonexpansive if

(1)F (T ) is nonempty;
(2)φ(u, Tx) ≤ φ(u, x), ∀u ∈ F (T ), x ∈ C.

The following conclusion is obvious.

Conclusion 1. A mapping is closed hemi-relatively nonexpansive if and only if
it is weak relatively nonexpansive.

It is obvious that, if T : E → E is relatively nonexpansive then using the
definition of φ one can show that F (T ) is closed and convex. It is also obvious
that, relatively nonexpansive mapping is a weak relatively nonexpansive mapping
and a weak relatively nonexpansive mapping is a hemi-relatively nonexpansive

mapping. In fact, for any mapping T : C → C, we have F (T ) ⊂ F̃ (T ) ⊂ F̂ (T ).

Therefore, if T is relatively nonexpansive mapping, then F (T ) = F̃ (T ) = F̂ (T ).

In recent years, the definition of weak relatively nonexpansive mapping has
been presented and studied by many authors [16-19], but they have not given
the example which is weak relatively nonexpansive mapping but not relatively
nonexpansive mapping. In the following, we give an example in Banach space
l2.



weak relatively nonexpansive and inverse-strongly monotone 91

Example. Let E = l2, where

l2 = {ξ = (ξ1, ξ2, ξ3, ..., ξn, ...) :

∞∑
n=1

|xn|2 < ∞},

‖ξ‖ = (

∞∑
n=1

|ξn|2) 1
2 , ∀ ξ ∈ l2,

〈ξ, η〉 =
∞∑

n=1

ξnηn, ∀ ξ = (ξ1, ξ2, ξ3, ..., ξn, ...), η = (η1, η2, η3, ..., ηn....) ∈ l2.

It is well known that, l2 is a Hilbert space, so that (l2)∗ = l2. Let {xn} ⊂ E be
a sequence defined by

x0 =(1, 0, 0, 0, ...)

x1 =(1, 1, 0, 0, ...)

x2 =(1, 0, 1, 0, 0, ...)

x3 =(1, 0, 0, 1, 0, 0, ...)

......................................

xn =(ξn,1, ξn,2, ξn,3, ..., ξn,k, ...)

......................................,

where

ξn,k =

{
1 if k = 1, n+ 1,

0 if k 6= 1, k 6= n+ 1,

for all n ≥ 1. Define a mapping T : E → E as follows

T (x) =

{
n

n+1xn if x = xn(∃ n ≥ 1),

−x if x 6= xn(∀ n ≥ 1).

Conclusion 2.1. {xn} converges weakly to x0.

Proof. For any f = (ζ1, ζ2, ζ3, ..., ζk, ...) ∈ l2 = (l2)∗, we have

f(xn − x0) = 〈f, xn − x0〉 =
∞∑

k=2

ζkξn,k = ζn+1 → 0,

as n → ∞. That is, {xn} converges weakly to x0. ¤

Conclusion 2.2. {xn} is not a Cauchy sequence, so that, it does not converges
strongly to any element of l2.

Proof. In fact, we have ‖xn − xm‖ =
√
2 for any n 6= m. Then {xn} is not a

Cauchy sequence. ¤

Conclusion 2.3. T has a unique fixed point 0, that is F (T ) = {0}.
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Proof. The conclusion is obvious. ¤

Conclusion 2.4. x0 is an asymptotic fixed point of T .

Proof. Since {xn} converges weakly to x0 and

‖Txn − xn‖ = ‖ n

n+ 1
xn − xn‖ =

1

n+ 1
‖xn‖ → 0

as n → ∞, so that, x0 is an asymptotic fixed point of T . ¤

Conclusion 2.5. T has a unique strong asymptotic fixed point 0, so that,

F (T ) = F̃ (T ).

Proof. In fact that, for any strong convergent sequence {zn} ⊂ E such that
zn → z0 and ‖zn − Tzn‖ → 0 as n → ∞, from conclusion 2.2, there exist
sufficiently large nature number N such that zn 6= xm, for any n,m > N . Then
Tzn = −zn for n > N , it follows from ‖zn − Tzn‖ → 0 that 2zn → 0 and hence
zn → z0 = 0. ¤

Conclusion 2.6. T is a weak relatively nonexpansive mapping.

Proof. Since E = L2 is a Hilbert space, we have

φ(0, Tx) = ‖0− Tx‖2 = ‖Tx‖2 ≤ ‖x‖2 = ‖x− 0‖2 = φ(0, x), ∀ x ∈ E.

From conclusion 2.5, we have F (T ) = F̃ (T ), then T is a weak relatively nonex-
pansive mapping. ¤

Conclusion 2.7. T is not a relatively nonexpansive mapping.

Proof. From conclusion 2.3 and 2.4, we have F (T ) 6= F̂ (T ), so that, T is not a
relatively nonexpansive mapping. ¤

Let E be a smooth, strictly convex, and reflexive Banach space and J be the
duality mapping from E into E∗. Then, J−1 is also single-valued, one-to-one
and surjective, and it is the duality mapping from E∗ into E. We define the
following mapping V :

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2, ∀x ∈ E, x∗ ∈ E∗. (2.4)

We also need the following lemmas for the proof of our main results.

Lemma 2.1 ([6]). Let p be a real number with p ≥ 2 and E be a Banach space.
Then, E is p-uniformly convex if and only if there exists a constant 0 < c ≤ 1
such that

1

2
(‖x+ y‖p + ‖x− y‖p) ≥ ‖x‖p + cp‖y‖p, ∀x, y ∈ E. (2.5)
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The best constant 1
c in Lemma 2.1 is called the p-uniformly convexity constant

of E. Putting x = u+v
2 and y = u−v

2 in (2.5), we get that, for all u, v ∈ E,

1

2
(‖u‖p + ‖v‖p) ≥ ‖u+ v

2
‖p + cp‖u− v

2
‖p. (2.6)

Suppose p > 1, the (generalized) duality mapping Jp from E into 2E
∗
is

defined as

Jpx = {v ∈ E∗ : 〈x, v〉 = ‖x‖p, ‖v‖ = ‖x‖p−1}, ∀x ∈ E.

In particular, J = J2 is called the normalized duality mapping, which has the
following properties:
(1) If E is smooth, J is single-valued.
(2) If E is strictly convex, J is one-to-one.
(3) If E is reflexive, J is surjective.
(4) If E is uniformly smooth, J is uniformly norm-to-norm continuous on each
bounded subset of E.

Lemma 2.2 ([3]). Let p be a given real number with p ≥ 2 and E be a p-
uniformly convex Banach space. Then, for all x, y ∈ E, jx ∈ Jpx and jy ∈ Jpy,
there is

〈x− y, jx − jy〉 ≥ cp

2p−2p
‖x− y‖p,

where 1
c is the p-uniformly convexity constant of E.

Lemma 2.3 ([5]). Let E be a uniformly convex and smooth Banach space and
let {yn}, {zn} be two sequences of E. If φ(yn, zn) → 0 and either {yn} or {zn}
is bounded, then ‖yn − zn‖ → 0.

Lemma 2.4 ([22]). Let C be a nonempty closed convex subset of a smooth
Banach space E and x ∈ E. Then, x0 = ΠCx if and only if

〈x0 − y, Jx− Jx0〉 ≥ 0, ∀y ∈ C.

Lemma 2.5 ([22]). Let E be a reflexive , strictly convex and smooth Banach
space, let C be a nonempty closed convex subset of E and let x ∈ E. Then

φ(y,ΠCx) + φ(ΠCx, x) ≤ φ(y, x), ∀y ∈ C.

Lemma 2.6 ([5]). Let E be a strictly convex and smooth Banach space, let C
be a closed convex subset of E, and let T be a relatively nonexpansive mapping
from C into itself. Then F (T ) is a closed convex subset of C.

Lemma 2.7 ([3]). Let E be a reflexive, strictly convex and smooth Banach space
and V be defined as in (2.4). Then,

V (x, x∗) + 2〈J−1(x∗)− x, y∗〉 ≤ V (x, x∗ + y∗), ∀x ∈ E, x∗, y∗ ∈ E∗.
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We denote by NC(v) the normal cone for C at a point v ∈ C, that is,

NC(v) = {x∗ ∈ E∗ : 〈v − y, x∗ ≥ 0 for all y ∈ C}.

Lemma 2.8 ([8]). Let C be a nonempty closed convex subset of a Banach space
E and A be a monotone, hemicontinuous operator of C into E∗. Let T ⊂ E×E∗

be an operator defined by

Tv =

{
Av +NC(v), v ∈ C,

∅, /∈ C.

Then, T is maximal monotone and T−10 = V I(C,A).

Lemma 2.9 ([3]). Let C be a nonempty closed convex subset of a Banach space
E and A be a monotone, hemicontinuous operator of C into E∗. Then,

V I(C,A) = {u ∈ C : 〈v − u,Av〉 ≥ 0, ∀v ∈ C}.

It is obvious from Lemma 2.9 that the set V I(C,A) is a closed convex subset
of C.

3. Main results

Theorem 3.1. Let C be a nonempty closed convex subset of a two-uniformly
convex and uniformly smooth Banach space E. Assume that A is an operator
of C into E∗ that satisfies the conditions (A1)-(A3) and T is a weak relatively
nonexpansive mapping from C into itself such that F = F (T ) ∩ V I(C,A) 6= ∅.
The sequence {xn} is defined by





x0 ∈ C chosen arbitrarily,

wn = J−1(βnJxn + (1− βn)JΠC(J
−1(Jxn − λnAxn))),

zn = ΠCwn,

yn = J−1(αnJxn + (1− αn)JTzn),

C0 = C,

Cn = {v ∈ Cn−1 : φ(v, yn) ≤ φ(v, xn)},
xn+1 = ΠCn(x0),

(3.1)

where {αn} and {βn} are sequences in [0,1) such that lim supn→∞ αn < 1 and

lim supn→∞ βn < 1. If {λn} is chosen so that λn ∈ [a, b] with 0 < a < b < c2α
2 ,

then the sequence {xn} converges strongly to ΠFx0, where
1
c is the two-uniformly

convexity constant of E.

Proof. Firstly, we show that Cn is closed and convex for each n ≥ 0.
From the definition of Cn, it is obvious that Cn is closed for each n ≥ 0. We
show that Cn is convex for each n ≥ 0. Since φ(v, yn) ≤ φ(v, xn) is equivalent
to

2〈v, Jxn − Jyn〉+ ‖yn‖2 − ‖xn‖2 ≤ 0,



weak relatively nonexpansive and inverse-strongly monotone 95

thus Cn is convex for every n ≥ 0.
Secondly, we prove that F ⊂ Cn, for all n ≥ 0.
Put un = J−1(Jxn − λnAxn) for every n ≥ 0. Let p ∈ F . From Lemmas 2.5
and 2.7, it holds

φ(p,ΠCun) ≤ φ(p, un) = V (p, Jxn − λnAxn)

≤ V (p, (Jxn − λnAxn) + λnAxn)

− 2〈J−1(Jxn − λnAxn)− p, λnAxn〉
= V (p, Jxn)− 2λn〈un − p,Axn〉
= φ(p, xn)− 2λn〈xn − p,Axn〉+ 2〈un − xn,−λnAxn〉,

(3.2)

for every n ≥ 0. From condition (A1) and p ∈ V I(C,A), we have

−2λn〈xn − p,Axn〉 = −2λn〈xn − p,Axn −Ap〉 − 2λn〈xn − p,Ap〉
≤ −2λnα‖Axn −Ap‖2 (3.3)

for every n ≥ 0. By Lemma 2.2 and condition (A3), we also have

2〈un − xn,−λnAxn〉 = 2〈J−1(Jxn − λnAxn)− J−1Jxn,−λnAxn〉
≤ 2‖J−1(Jxn − λnAxn)− J−1Jxn‖‖λnAxn‖

≤ 4

c2
‖Jxn − λnAxn − Jxn‖‖λnAxn‖

=
4

c2
λ2
n‖Axn‖2 ≤ 4

c2
λ2
n‖Axn −Ap‖2.

(3.4)

Therefore, from (3.2)-(3.4), we have

φ(p,ΠCun) ≤ φ(p, xn) + 2a(
2b

c2
− α)‖Axn −Ap‖2.

By the convexity of ‖ · ‖2 and Lemma 2.5, we have

φ(p, zn) ≤ φ(p, wn)

= ‖p‖2 − 2〈p, βnJxn + (1− βn)JΠC(J
−1(Jxn − λnAxn))〉

+ ‖βnJxn + (1− βn)JΠCun‖2
≤ ‖p‖2 − 2βn〈p, Jxn〉 − 2(1− βn)〈p, JΠCun〉
+ βn‖xn‖2 + (1− βn)‖ΠCun‖2

= βnφ(p, xn) + (1− βn)φ(p,ΠCun)

≤ φ(p, xn) + (1− βn)2a(
2b

c2
− α)‖Axn −Ap‖2.
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Then,

φ(p, yn) = ‖p‖2 − 2〈p, αnJxn + (1− αn)JTzn〉+ ‖αnJxn + (1− αn)JTzn‖2

≤ ‖p‖2 − 2αn〈p, Jxn〉 − 2(1− αn)〈p, JTzn〉+ αn‖xn‖2 + (1− αn)‖Tzn‖2
= αnφ(p, xn) + (1− αn)φ(p, Tzn)

≤ αnφ(p, xn) + (1− αn)φ(p, zn)

≤ φ(p, xn) + (1− αn)(1− βn)2a(
2b

c2
− α)‖Axn −Ap‖2

≤ φ(p, xn).

(3.5)

Therefore p ∈ Cn, for all n ≥ 0 and hence F ⊂ Cn, for all n ≥ 0. Since F is
nonempty, Cn is a nonempty closed convex subset of E and thus ΠCn

exists for
every n ≥ 0. Hence {xn} is well defined.
Thirdly, we shall show that limn→∞ xn = x ∈ F (T ).
Since xn+1 = ΠCn

(x0), one has

〈xn+1 − z, Jx0 − Jxn+1〉 ≥ 0, ∀z ∈ Cn

and

〈xn+1 − p, Jx0 − Jxn+1〉 ≥ 0, ∀p ∈ F. (3.6)

From Lemma 2.5, one has

φ(xn+1, x0) = φ(ΠCn(x0), x0) ≤ φ(p, x0)− φ(p, xn+1) ≤ φ(p, x0),

for each p ∈ F ⊂ Cn and n ≥ 0. Then the sequence {φ(xn+1, x0)} is bounded.
Moreover from (2.3), we have that {xn} is bounded. Since xn+1 = ΠCn(x0), one
has

φ(xn, x0) ≤ φ(xn+m, x0), ∀n ≥ 0.

Therefore, {φ(xn, x0)} is non-decreasing. It follows that the limit of {φ(xn, x0)}
exists. From Lemma 2.5, we have, for each n ≥ 0,

φ(xn+m, xn) ≤ φ(xn+m, x0)− φ(xn, x0).

This implies that limn→∞ φ(xn+m, xn) = 0. It follows from Lemma 2.3, that
xn+m − xn → 0 as n → ∞. Hence {xn} is a cauchy sequence. Since E is a
Banach space and C is closed and convex, one can assume that xn → x ∈ C as
n → ∞.
Since xn+1 = ΠCn(x0) ∈ Cn, from the denition of Cn, we also have, for each
n ≥ 0,

φ(xn+1, yn) ≤ φ(xn+1, xn).

Taking n → ∞, we have limn→∞ φ(xn+1, yn) = 0. Using Lemma 2.3, we obtain

lim
n→∞

‖xn+1 − yn‖ = lim
n→∞

‖xn+1 − xn‖ = 0.

From ‖xn − yn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖, we have

‖xn − yn‖ → 0, n → ∞.
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Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖Jxn+1 − Jyn‖ = lim
n→∞

‖Jxn+1 − Jxn‖ = lim
n→∞

‖Jxn − Jyn‖ = 0. (3.7)

Therefore, for each p ∈ F , we have

φ(p, xn)− φ(p, yn) = 2〈p, Jyn − Jxn〉+ ‖xn‖2 − ‖yn‖2
≤ 2‖p‖‖Jyn − Jxn‖
+ (‖xn‖ − ‖yn‖)(‖xn‖+ ‖yn‖) → 0.

(3.8)

On the other hand, we have, for each n ≥ 0,

‖Jxn+1 − Jyn‖ = ‖αn(Jxn+1 − Jxn) + (1− αn)(Jxn+1 − JTzn)‖
≥ (1− αn)‖Jxn+1 − JTzn‖ − αn‖Jxn+1 − Jxn‖.

Therefore,

‖Jxn+1 − JTzn‖ ≤ 1

1− αn
(‖Jxn+1 − Jyn‖+ αn‖Jxn+1 − Jxn‖).

From (3.7) and lim supn→∞ αn < 1, we obtain

‖Jxn+1 − JTzn‖ → 0, n → ∞.

Since J−1 is also uniformly norm-to-norm continuous on bounded sets, we have
limn→∞ ‖xn+1 − Tzn‖ = 0. From ‖xn − Tzn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Tzn‖,
we have

lim
n→∞

‖xn − Tzn‖ = 0. (3.9)

From (3.5), we have

−(1− αn)(1− βn)2a(
2b

c2
− α)‖Axn −Ap‖2 ≤ φ(p, xn)− φ(p, yn).

By (3.8), lim supn→∞ αn < 1, lim supn→∞ βn < 1, we have

‖Axn −Ap‖ → 0, n → ∞. (3.10)

From Lemmas 2.5 and 2.7, and (3.4), for each n ≥ 0, we have

φ(xn,ΠCun) ≤ φ(xn, un) = V (xn, Jxn − λnAxn)

≤ V (xn, (Jxn − λnAxn) + λnAxn)− 2〈J−1(Jxn − λnAxn)− xn, λnAxn〉
= V (xn, Jxn)− 2λn〈un − xn, Axn〉
= φ(xn, xn) + 2〈un − xn,−λnAxn〉,
= 2〈un − xn,−λnAxn〉,

≤ 4

c2
λ2
n‖Axn −Ap‖2.

By (3.10), we get

φ(xn,ΠCun) → 0, n → ∞. (3.11)
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Applying Lemma 2.3, from(3.11), we obtain that

‖xn −ΠCun‖ → 0, n → ∞. (3.12)

Since J is uniformly norm-to-norm continuous on bounded sets, we have

‖JΠCun − Jxn‖ → 0, n → ∞. (3.13)

From (3.1) and (3.13), we have

‖Jwn − Jxn‖ = (1− βn)‖JΠCun − Jxn‖ → 0, n → ∞.

Since J−1 is also uniformly norm-to-norm continuous on bounded sets, we have
limn→∞ ‖wn − xn‖ = 0. Since

φ(xn, zn) ≤ φ(xn, wn) = 〈xn, Jxn − Jwn〉+ 〈wn − xn, Jwn〉
≤ ‖xn‖‖Jxn − Jwn‖+ ‖wn − xn‖‖wn‖ → 0, n → ∞.

from Lemma 2.3, we have

lim
n→∞

‖xn − zn‖ = 0. (3.14)

From (3.9) and (3.14), we have

‖zn − Tzn‖ ≤ ‖zn − xn‖+ ‖xn − Tzn‖ → 0, n → ∞. (3.15)

It follows from (3.14) that zn → x as n → ∞. From (3.15) and the definition of
T , we have x ∈ F (T ).
Fourthly, we aim to prove x ∈ V I(C,A).
From(3.12), we have ΠCun → x. Let S ⊂ E × E∗ be an operator as follows:

Sv =

{
Av +NC(v), v ∈ C,

∅, v /∈ C.

By Lemma 2.8, S is maximal monotone and S−10 = V I(C,A). Let (v, w) ∈
G(S). Since w ∈ Sv = Av+NC(v), we have w−Av ∈ NC(v). From ΠCun ∈ C,
we get

〈v −ΠCun, w −Av〉 ≥ 0. (3.16)

On the other hand, from Lemma 2.4, we have 〈v − ΠCun, JΠCun − Jun〉 ≥ 0.
Hence, there is

〈v −ΠCun,
Jxn − JΠCun

λn
−Axn〉 ≤ 0. (3.17)
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Then, it holds from (3.16) and (3.17) that, for every n ≥ 0,

〈v −ΠCun, w〉 ≥ 〈v −ΠCun, Av〉

≥ 〈v −ΠCun, Av〉+ 〈v −ΠCun,
Jxn − JΠCun

λn
−Axn〉

= 〈v −ΠCun, Av −Axn〉+ 〈v −ΠCun,
Jxn − JΠCun

λn
〉

= 〈v −ΠCun, Av −AΠCun〉+ 〈v −ΠCun, AΠCun −Axn〉

+ 〈v −ΠCun,
Jxn − JΠCun

λn
〉

≥ −‖v −ΠCun‖‖ΠCun − xn‖
α

− ‖v −ΠCun‖‖JΠCun − Jxn‖
a

≥ −M(
‖ΠCun − xn‖

α
+

‖JΠCun − Jxn‖
a

),

where M = sup{‖v − ΠCun‖ : n ≥ 0}. From (3.12) and (3.13), we have 〈v −
x,w〉 ≥ 0 as n → ∞. By the maximality of S, we obtain x ∈ S−10, that is
x ∈ V I(C,A). Therefore, x ∈ F .
Finally, we prove x = ΠFx0. By taking limit in (3.6), one has

〈x− p, Jx0 − Jx〉 ≥ 0, ∀p ∈ F.

at this point, in view of Lemma 2.4, one sees that x = ΠFx0. This completes
the proof. ¤

Taking A = 0, Theorem 3.1 reduces to the following result.

Corollary 3.2. Let C be a nonempty closed convex subset of a two-uniformly
convex and uniformly smooth Banach space E. Assume that T is a weak rela-
tively nonexpansive mapping from C into itself such that F (T ) 6= ∅. The sequence
{xn} is defined by





x0 ∈ C chosen arbitrarily,

wn = J−1(βnJxn + (1− βn)JΠCxn),

zn = ΠCwn,

yn = J−1(αnJxn + (1− αn)JTzn),

C0 = C,

Cn = {v ∈ Cn−1 : φ(v, yn) ≤ φ(v, xn)},
xn+1 = ΠCn(x0),

where {αn} and {βn} are sequences in [0,1) such that lim supn→∞ αn < 1 and
lim supn→∞ βn < 1. Then the sequence {xn} converges strongly to ΠFx0, where
1
c is the two-uniformly convexity constant of E.

Taking αn ≡ 0, βn ≡ 0, T = I, Theorem 3.1 reduces to the following result.

Corollary 3.3. Let C be a nonempty closed convex subset of a two-uniformly
convex and uniformly smooth Banach space E. Assume that A is an operator of
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C into E∗ that satisfies the conditions (A1)-(A3) and that V I(C,A) 6= ∅. The
sequence {xn} is defined by





x0 ∈ C chosen arbitrarily,

wn = ΠC(J
−1(Jxn − λnAxn)),

yn = ΠCwn,

C0 = C,

Cn = {v ∈ Cn−1 : φ(v, yn) ≤ φ(v, xn)},
xn+1 = ΠCn

(x0),

where {λn} is chosen so that λn ∈ [a, b] with 0 < a < b < c2α
2 , then the se-

quence {xn} converges strongly to ΠFx0, where
1
c is the two-uniformly convexity

constant of E.

We can also get the following result.

Theorem 3.4. Let C be a nonempty closed convex subset of a two-uniformly
convex and uniformly smooth Banach space E. Assume that A is an operator
of C into E∗ that satisfies the conditions (A1)-(A3) and T is a relatively non-
expansive mapping from C into itself such that F = F (T ) ∩ V I(C,A) 6= ∅. The
sequence {xn} is defined by





x0 ∈ C chosen arbitrarily,

wn = J−1(βnJxn + (1− βn)JΠC(J
−1(Jxn − λnAxn))),

zn = ΠCwn,

yn = J−1(αnJxn + (1− αn)JTzn),

C0 = C,

Cn = {v ∈ Cn−1 : φ(v, yn) ≤ φ(v, xn)},
xn+1 = ΠCn(x0),

where {αn} and {βn} are sequences in [0,1) such that lim supn→∞ αn < 1 and

lim supn→∞ βn < 1. If {λn} is chosen so that λn ∈ [a, b] with 0 < a < b < c2α
2 ,

then the sequence {xn} converges strongly to ΠFx0, where
1
c is the two-uniformly

convexity constant of E.
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