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ABSTRACT. By using an important lemma, some analysis techniques and
Lyapunov functional method, we establish the sufficient conditions of the
existence of equilibrium solution of a class of BAM neural network with
impulses and distributed delays. Finally, applications and an example are
given to illustrate the effectiveness of the main results.
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1. Introduction

Recently, BAM neural networks have attracted the attention of many re-
searchers due to its applications in many fields such as pattern recognition, auto-
matic control and optimization, and many results for BAM neural networks have
been derived [1-8]. Further, the theory of impulsive differential equations is now
being recognized to be not only richer than the corresponding theory of differ-
ential equations without impulse, but also represents a more natural framework
for mathematical modelling of many real world phenomena, such as population
dynamics and neural networks, hence, the impulsive differential equations have
been extensively studied recently [5,6,9-19]. On the other hand, in practice, it is
preferable and desirable that neural networks not only converge to equilibrium
points but also admit a convergence rate which is as fast as possible. Since the
exponential stability gives a fast convergence rate to the equilibrium point, it
is necessary to study the exponential stability and to estimate the exponential
convergence rate, see [9,10,20-27].

Therefore, it is necessary and important for scholars to study the existence
and exponential stability of equilibrium points for impulsive neural networks
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with delays [9,10,23-26]. For example, Zhou [10] investigated the following BAM
neural networks:

SO = )+ 3 s 05(0)
+ Z Lo [ kyi(s) f5(y; (t — 750 — 5))ds + bi, t # ti

Azi(t) = Zk(:cz(t)) = Buwi(te) + 5, Cun(s)wi(s)ds + i, t = ti

yi(t) = —azy(t) + Zil hijgi(zi(t)) (1.1)
+Zl” I3 kg (s) filwi(t — 0ij — s))ds + by, t # tx

Ay;t) = Jk(yj( ) = Bjry;(tx) + ft:,l Cik(s)y; (s)ds + @i, t = ti

By using the contraction mapping principle and Lyapunov functional, the suf-
ficient conditions ensuring global exponential stability of the equilibrium points
of (1.1) are established.

Motivated by above discussion, in this paper, we shall establish a class of
impulsive BAM neural network with distributed delays as follows:

2 = —ae(wi(t) + i bji 5y (8))

+ Z Li Jo kji(5)g;(y; (t =50 — 8))ds + i, t # ty
Ax;(t) le(tJr) —x;(t ); L (x5(1)),t = t,
yi(t) = —cihily;(8) + ;dijpi(xi(t)) (1.2)

with initial values

:L‘Z(S) = ¢r7(5)a —h<s< Ovyj(s) = ¢yj (5)7 *B <s< O7h =0+ max {Jij}a

1<isn,1<j<m

h=7+  max {Tﬂ}, ¢z, € C([=h,0], R), ¢y, € C([~h,0],R).

Sisn,lsg)sm

where z;(t) and y,(t) are the states of the ¢th neuron and the jth neuron at
time ¢,t € RT = [0, +00), respectively. a;,c; denote the neuron charging times.
bji,ljs, di; and l~ij (t) are the weights of the neuron interconnections. I; and J;
are the external inputs on the neurons. Ax;(t) and Ay;(t) are the impulses at
moments t = t; and t; < to < --- is a strictly increasing sequence such that
limg yootpy = 00,0 =1,2,--+ ;n,j=1,2,--- ,m. 7> 0,0 >0 are constants. As
usual in the theory of impulsive differential equations, at the points of disconti-
muity 5 of the solution 2(£) = (21(£), za(t), - »a(£),2(£),y2(8), -+  ym (1))
we assume that z(t;) exists, and z(t; ) = z(t). It is clear that there exist the
limits 2/(t;,), 2/(t]7) such that 2/(t; ) = 2/ (t).
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Our aim is, under the generalized r-norm (r > 1), by using an important
lemma and constructing suitable Lyapunov functional, to obtain the sufficient
conditions ensuring the existence and globally exponential stability of equilib-
rium solution of (1.2).

The rest of this paper is organized as follows. In section 2, definitions and
lemmas are introduced. In section 3, by using Forti and Tesi’s theorem, the
sufficient conditions of the existence of equilibrium solution are established. In
section 4, the conditions ensuring the globally exponential stability of the equi-
librium point are derived. Finally in section 5, applications and an illustrative
example are given to show the usefulness of the main results.

2. Preliminaries

First we make some preparation and introduce some elementary definitions
and lemmas. ~
Let PC be a class of function ¢ = (¢, ¢,)T : ([=h,0], [—h,0)T — (R", R™)T
satisfying:
(i) ¢ is piecewise continuous with first kind discontinuity at point ¢z, and is
left-continuous at ty, k =1,2,---,p.
(i) Az;(tr) = Lik(zi(te)), Ay;(te) = Jjn(y;(ty)) fori=1,2,--- ,n,
i=12- mk=1,2---.
For each ¢ = (¢, ¢))" € PC, 2(t) € R™™™, we define

n v

gl = 1> Sup[)]|¢xi(8)lr+z sup ¢y, ()" |

i—1 s€[=h, j=1 s€[=h,0]

-

120l = | ol + >l or |

where 7 > 1 is a constant, 2(¢) = (z1(t),z2(t), -+, 2n(t),y1(t), -, ym ()T,
¢CE = (¢113¢w27 e a¢w7L)T and (by = (¢y17¢y27 e 7¢ym)T'
Definition 2.1. A constant vector z* = (z},23,--- , 2%, yf, - ,y’,)7T is said to

be an equilibrium solution of impulsive system (1.2) if

aieiw) = Y biifi )+ Ligi () / yi(s)ds + I
(i) =1 =1 '
cihi(y;) = Z dijpi(w;) + Z lijai(x)) /0 kij(s)ds + J; (2.1)
=1 =1
(i) Lp(z}) =0, ij(y;) =0.

Definition 2.2. The unique equilibrium z* = (2,25, -+, 2%, y5, - ,y5)T of
system (1.2) is said to be globally exponentially stable if there exists constant
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a > 0, M > 1 such that for all t > 0,
1

S lai(t) =l S Jyi () — il p < Mem*H|g — 27|,
=1 j=1

where
62711 = { iy $UPac o 162 (5) = 217 + X5y sub,e g 64, (5) = v51" |

Definition 2.3 [28]. A real matrix A = (ai;)nxn is said to be an M-matrix if
ai; > 0,a;; <0(i,7=1,2,--- ,n,i # j) and successive principle minors of A are
positive.

1
r

Lemma 2.1 [29]. Let @ be an n X n matrix with non-positive off-diagonal
elements. Then @ is an M-matrix if and only if one of the following conditions
holds:

(i) There exists a vector £ > 0 such that Q¢ > 0;

(ii) There exists a vector £ > 0 such that £7'Q > 0.

Lemma 2.2 [30]. (Young inequality) Assume that a,b,p,q > 0,p+ ¢ = 1, then
aPb? < pa + ¢b.

Lemma 2.3 [31]. (Forti and Tesi’ theorem) If H(x) € C? satisfies the following
conditions:

(i) H(zx) is injective on R™*™,

(i) [ H (2)]| = +o0 as [lz]| = +oo,

then H(z) is homeomorphism of R™*™ onto itself.

Throughout this paper, we always assume that:
(A1) a; > 0,¢; > O,bji,dij,lji,zij,fi and J; are constants for i =1,2,--- ,n,
j=1,2,---,m.
(A2) e;, hj : R — R are differentiable function satisfying 0 < g; < e}(u), e;(0) =0
and 0 < g; < hj(v), h;(0) =0 for any u,v € R,i =1,2,--- ,n,j=1,2,--- ,m.
(As) Functions f;(u), g;(u), pi(w), ¢;(u) satisfy the Lipschitz conditions, i.e., there

exist positive constants F}, G, P;, Q; such that
|fi(w) = fi()] < Fjlu—vl|, |g;(u) —g;(v)] < Gjlu—l,
pi(u) = pi(v)| < Pilu—vf,  [gi(u) — ¢:(v)] < Qifu —v|

with f;(0) = g;(0) =0, p;(0) = ¢;(0) =0 for any u,v € R,i =1,2,--- ,n,
j=1L2,--- ,m. B
(A4) Functions kj;(t) and k;;(t) are positive piecewise continuous and satisfy

/ "Mkt = (7). / T My (1)t = $(n, o),
0 0

where (1, 7) and ¥(n, o) are continuous in 1. When 7 = 00,0 = oo, (1, 7) =
w(n), P(n,0) = ¢(n) with 9(0) = ¢(0) = 1.
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3. Existence of equilibrium solution

In this section, employing the Forti and Tesi’s theorem, we will establish the
sufficient conditions of the existence of equilibrium solution of system (1.2).

Theorem 3.1. Assume that (A;)—(A4) hold. Further, if there exists a constant
r > 1 such that the following condition holds.

(A5) T = ( rd - ETF_ NG C ZTP_ 10 ) is a nonsingular M-matrix,
where A = dmg(awhazgz,-;- anon), C= dmg(0191,0202, s CmOm),
G dzag(GhGQa"' ) ) Q dzag(Q17Q27"' an) (pl])nxma

(sz)mXTLv G Z] 1|b]1‘F +|ZJ1|G fO JZ dS
Q] =37 |dif| P+ |11 Qs fo i (s)ds, Pij fP\deQlllwlfo ij(s)ds,
fii = |bji Fj + |lﬂ\G Jo kji(s)ds. Then system (1.2) admits exactly one equilib-
rium solution z* = (xf,--- , x5, y7, - ,ym) .

Proof. For z = (z1,72,  ,Tn, Y1, ** ,Ym) € R"T™, define a mapping 1 :
R"T™ — R™™ a5 follows:

m

¥i(2) = azei(x;) Z bjifi(y;) — Z f 8)g;(y;j)ds — I;

J=1 (3.1)

n

'¢'n+j(z) = Cj yj Z 1jp1 xz) - Z f klj (5 ‘h(fﬂz)ds - ij

where w(z) = (’(/)1 (Z), ¢2(2)7 e a'djn(z)’ ¢n+1(2), o awn+m(z)) € Rn—&-m.
Firstly, we demonstrate that the mapping v is injective, i.e., ¥(z) = ¥(2)

implies that z = Z for any z,Z € R"*™. It is clear that ¢(z) = ¢¥(Z) means:
ai(ei(zi) — ei(E:)) — Zj 1 Jz(fj(yy) fi(95))
_ZJ 1 lji fO 5i(8)(95 (y5) — 95(F;))ds =0 (3.2)
¢j(hj(y;) — hj(95)) — Zi: ij (pi(2:) — pi(Zi)) ‘
- Z::l lji f i3 (8)(qi(z:) — qi(Z:))ds = 0

Then from (Az) — (A4) and (3.2), we derive that
{ a;0ilzi — &;| < Z (|b]z|F + [15:1G; fO ]z ds) ly; — 45,
a3lus 531 < Sy (g P+ 1051 [ oy () s .

On the other hand, we obtain from (A5) and Lemma 2.1 that, there exists
E= (&%, & bntts 5 &ngm) T > 0 such that

(3.3)

m
r&ia;0i — &(r — 1) Z |bjil By + 115:1G5 fOT kji(s)ds)

- Z Ent i (|diz| Pi + [15]Qq foa kij(s)ds)) > 0
s . (3.4)
réntjCi8j = Enti(r = 1) Y (Idis| Py + 11351Qs [ Kij(s)ds)
i=1

n
— Y2 &bl Fy + 110l Gy [ kji(s)ds) >0
=1

i=
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Further, by Lemma 2.2, it follows from (3.3) that

n
Zfiawi\xi — &l
.
- = r—1
< ZEZZ (bji|Fj + |lji|Gj/0 kji(S)d8> lyj = gjllei — &l
i=1

— (3.5)
" r—1 1
< ZEZZ (bjile + |lji|Gj/0 kji(S)d8> x ( e ﬂj\r) ;
=1 =
and
m
Z§n+j0j§j|yj - 5l"
j=1
m n T
<> sy <|d”|P + w@/ Fij (s)d > lys = 551" i — @l
j=1 i=1 0 (3.6)

m n o
4 g T
< E Entj g <|dij|Pi+|lijQi/o kz‘j(S)dS> X (7\% - g+ = \:vszz\r>
j=1 i=1

(3.5) plus (3.6) lead to

n 1 m - m -
> (51““@2' - % D (sl + IljilGj/ ji(s)ds) = » S 2 (|dig | P
i=1 0 =1

. i R -1\
+lij1 Qi /O l%(s)ds)) @i — | +Z(snﬂcgeffZ<\dw|H
j=1 i=1
B o n fl T .
+Tis1Q: / Rij($)ds) =Y = (bjil By + 1alGy [ kja(s)ds) | lug — 51" < 0
0 0

(3.7)

Substituting (3.4) into (3.7), we have |z; — &;|" — 0, ]y; — g;|” = 0. That is,
Ty =24,y =y; fori=1,2,--- ,n,j=1,2,--- ,m, namely, z = Z, which means
¥ € OV is injective on R™T™.

Next we demonstrate the property ||i(z)|| — oo as ||z| — oo. Consider

mapping ¥(z) = 1 (z) — $(0), i.e.,

m m T
Yi(2) = aiei(w;) Z bjifi(y;) Zl / (5)9;(y;)ds,
7j=1 Jj=1
G ) = 5hy(a5) = D dpie) = 3l | Bseatwas
=1 =1
for z = (53171'2,"' yLns Y1, aym)T € Rn+m7i = 1a2a"' 7n7.j = 1a2a"' , M. Tt

is enough to show that [[¢(z)|| — oo as ||z|| — co. Using the Young inequality,
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we have
n

> réilwil " sgn (@) (asei (@) — vi(2)

i=1

= ZT§Z|%| “sgn(z;) (Z bjifi(y;) Z JZ/ gj(yj)kji(s)d'S)
i1 =1 0
<Y el 1(|bﬂ|F + 116 / k‘ji(S)dS) | (38)

=1 j=1
= ZZ& (bﬂ|F + 11| G / kji(s)d 5> ((r = Dlaa|” + [ys1")
=1 j=1
and
D réasslys " sgn(ys) (eshs(ys) — v (2))
j=1

= réntilyil”  sgn(y;) (Zdwpz zi) Zzij / gi(wi)ki; (s)ds>
j=1 i=1 0
<3N el 1<d”|P 1i1Q: / Fu(s)d ) i 3.9)

Jj=1 i=1

<> e (|d”|P - [E1s / o ) ((r = Dlysl" + sl

Jj=1 i=1

(3.8) plus (3.9), then

D riladl " sgn(@a) (@iei(@s) = i) + D réanslysl” " sgn(ys) (esh; () — 65(2))
i=1 j=1

< ZZ (gl (r—1) <|bj,|F + 11l G5 / ji(s)ds)
=1 j=1

+énj <dz‘jlpi+ \le‘jQi/ f%‘j(S)dé‘)) |24]"
0
+ZZ <§n+g (r—1) (ldz’j|Pi + \l}j|Qi/ ’;’ij(S)d5>
. 0
i—1 im1

+&; (|bji|Fj + |lji\Gj/ kji(s)ds)) ly;!"
0
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That is,

m

Z {T&iaigi - Z <Ei(7“ -1) <|bji|Fj + 151G / kji(s)d5>
0

i=1 j=1

+entj (ldijPi + |[ij\Qi/ 15@'(8)6“)) } |2
0

n

+ Z {Tinﬂ'cj@j - Z (§n+j(7" -1 <|dij|Pi + |l~z‘j\Qz‘/ fvij(S)d8>
j=1 0

i=1

+&; <bji|Fj + 1154|G; / kji(s)d5>> } ly;]”
0

<D Grdi@lel T+ Y Grgrd ()l
i=1 j=1
Therefore,

m n

9 (inwzyjr') <ret ( i)l +Z%(z)|yﬂ1>
=1 =1 1 j=1

1=

where

9 = min {@E‘n <raaigi = (= D&l By + 11561G5 /0 kji(s)ds)

j=1

+naj(ldis | P; + |ZijQi/ ifij(s)ds))> , min (TfnJerj@j - Z(Euﬂ(\diﬂpi
0

1<j<m
i=1

+\Zij|Qi/ kij(s)ds)(r — 1) + & (|bji| F; + |lji\Gj/ kji(s)ds))> } >0,
0 0

§+ = maX{El,ﬁzw" y€nyEnt1, ,£n+m}‘

By applying Holder inequality, we have

S lmlm+ Yyl < % (Z il ™+ |ij> (Z i)™+ |%<z>|r>
=1 Jj=1 =1 Jj=1 =1 Jj=1

where s > 0,7 > 0 such that % + % = 1. That is,

1
=

1

-

(szwwzjyjr) g7§<z|&<z>r+2%<z>|’“> ,
i=1 j=1 i=1 j=1

Le, |z|| < %HJ(Z)H, from which we assert that [|[1)(z)|| — oo as ||z]| — oc.
By Lemma 2.3, we conclude that ¢ € C° is a homeomorphism on R"*™, which
guarantees the existence of a unique solution z* € R™*™ of the algebraic system
(2.1) which defines the unique equilibrium state of the impulsive network (1.2).
This completes the proof.
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Remark 3.1. The proof of the existence of equilibrium point of (1.2) is different
from those [8-10], and by applications in section 5, one can see that the results
here improve or extend the corresponding results [8-10, 20].

In Theorem 3.1, if r — 1, then we have

Corollary 3.1. Assume that (A1) — (A4) hold. Further,
(Ag) TV = ( —Aﬁ' 7C'P ) is a nonsingular M-matrix,
where A = diag(ay 01,05 02, ,a, 0n), C = diag(cy 01, 02_52, Ce L C Om)s
P (ﬁzg)nxma F= (fjl)mxna ﬁz] P |d’Lj| + Q |Z’Lj| fo z] dS
= |bji| F;+11;i|G; [ kji(s)ds. Then system (1.2) has at least one equilibrium.

4. Globally exponential stability

Theorem 4.1. Assume that (A1) — (A45) hold. Further,
(A7) Lin(zi(tr)) = —Bun(zi(te) — 27), Jikly;(tr)) = —vin(y;(te) — ),
|1_ﬁ1k|T_1 SO? |1_7jk|r_1§0f0ri:1721”' 7naj: 1a27"' , 1M,

k=1,2,--- . Then the equilibrium solution z* of (1.2) is globally exponentially
stable.

Proof. By Theorem 3.1, there exists a unique equilibrium solution

z* = (xT7CE;v S T YT vy;kn)T of (1'2)'

Let Z(t) = (mT(t)a yT(t))T = (xl(t)wrQ(t)? T amn(t)a yl(t)v T 7ym(t))T be an
arbitrary solution of (1.2), then we have

A0l < _agleq(ai(t) - )|+Zl b5l 15 (s () = £l
+ZJ 1 14 fo gi(8)lg; (t — 750 — 8) —gj(y;-‘)\ds
—aigilzi(t) — @ |+Z,1 1bji | Fily; (2) = v7 |
. +2 i il Gy fo 5i($)y; (¢ — 750 — 5) — yjlds
D@0l < gl (s (1) — by (y])| +Z] s lpe(@i () = i) (a1)
+Z i—1 ‘lw|f0 i (9)qi(zi(t — 045 — 8)) — qi(z])|ds
C]QJ|?/J() y]|+zj 1P|d13‘|12() *|
\l”|f0 i (8)Qilzi(t — oij —s) — x}|ds

fort > 0,t #tp,i=1,2,--- ,n7j =1,2,---,m.
On the other hand, according to condition (As) and Lemma 2.1, there exist

a vector (gla 527 T agna €’VL+17 e a€n+m)T such that
§i (mz‘Qi—(T—l)Z 1 (105l F5 + 11541 G5 fo ji(s)ds)

- E;n 1 §n+J (P |le| + Q7,|ll.7| fo lJ ds))

Entj (chéj —(r—1) Zt 1(|d2J|P + |ZZJ|Q1 fo 1] ds)
- Z;L:l gi(FJ|bﬂ| + G]|ZJZ| fo JZ ds)) > 0.
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xi(€) = & (= = raos + (= 1) ST, (b5l By + 141G f Ks(s)ds) )
+ 307 Ent (Pildis| + Ques7 |l [ Ky (s)e*ds)

Kkj(e) = £n+1( TC]Q]+(T_1)Z (dZJP+l1]Qlf0 i ( ds))
FEL 6 (B + Gae ) ) ki(s)ds)

It is clear that x;(0) < 0,x,(0) < 0. Since x;(€), x;j(g) are continuous on [0, o)

and x;(e), k;(e) = 400 as € = +00, and dXd;E(E) >0, Mé%e(a) > 0, then there exist
constant &, n; such that

xi(&) =& (G —raioi+ (r—1) Y7 (b5l By + 11l Gy [ kji(S)dS))
+ D07 nr (Pildig) + Qiegf”” [Lij] [ Fij(s)esi*ds) =0

ki (7)) = ntj (77]* rci0j + (r—1) (leJ|P + |lu‘Q fg ~’LJ ds)) (4.2)
+Z, 1& (F [bjil +G75n i |lﬂ|f0 i ds) =0

By ChOOSng 0 <A< mm{ffyfs, ag;:anfa"' 777:(1} for i = 132a"' an7j =
1,2,--- ,m, we have

xi(A) =& (A—mi@ﬁ(r—l)z  (Ibjil Fy +|zﬂ\G 7 kji(s)d ))
+ 20 Gk (Pldu|+e*%Q|z”| J7 Ei(s)ereds) <0

i (A) = €n+j ()\ rej0; + (r—1) Zl 1 (|d”‘P + |l”|QZ fJ ~”(3 )) (4.3)
+ 30 & (Fylbssl + €7 Gillyal [ Kyis)e*ds) <.

Let u;(t) = eM|x;(t) — 27 |", v;(t) = e*[y;(t) — y;|", from (4.1), we derive that

T < XM foa(t) - w7+ reNan(t) — a7 sgn(ai(t) - a7)
(- ale‘xl( ) —x; ‘ + Z i—1 |le‘F |yj(t) - yg:‘

s +Z, 1|lﬂ|G fo i (8)y; (t — 750 — S)*y]-\dS)

L@ < X My; (1) — yi 1"+ reMly; (8) — yi " sgnly; () — ) (4.4)
(- cJ@J|yJ<>—y]|+zJ | Pildiylzi(t) — o]
S0 Nl [ iy (8)Qili(t — 04y — 5) — af]ds)

for t > 0,t # tx. When t = t, for i = 1,2,--- ,n,j = 1,2,--- ;m, it follows
from (A7) that

wi(tF) = 11— ool "u (te) < ulty), vi(tF) = 11— Bjrl™v;(tr) < vj(ty) (4.5)
Define a Lyapunov functional as follows:

V(t) = Z?:l & (ui(t) + Z;nzl |lji|e/\‘rjiGj foT ka ers ft . dzds)
+ 21 6nti (Uj(t) + i Wigler s Qi fy Kij(s Asft - dZdS)
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By calculating the derivative of V'(¢) along the solution of (1.2) and from (4.3),
(4.4) and Lemma 2.2, we have

atv(t)
dt

n +ul Tii S
= I (O T Gy ) k() oy (0)ds
— > il G e f kji(s)e v, (t — 75 — s)ds)

+z] s (T +zl Qi [ (o) w1
_ZZ 1|113|Q15A0” fO i ( 6 Uz(t—Jz]’—s)dS)
? L& (A = raios)|ui(t )|T+T6M T bgl Fylyi () — 5 [ (8) —
MY 3l Gy ) Rgi()]ai(t) — @i [T ys (8 — i — 8) — y5lds
+Z]: e i :|Gj f kji(s)e Sdsuj(t)
— T Gy [T ka(s) e*suj(t-73i-s)ds)
+Z;” 1 &ni (A TC@;)M( )T+ re 3T (dig| Pilwa(t) — | |ys (8) — i7"
MZZ 1“%]|sza Z] s)|y;(t) — yj|r 1|331( — 045 — 8) —xj|ds
+Z"71 |lij]Qie*7i9 fa kij(s)er (ui(t) — ui(t — 045 — 5))ds)
Y& ((/\*mzez)luz( OF +reX 3 b5l Fy (Flys(8) — y51” (4.6)
+T;1|$i( ) — i ) + et Ejzl |15:|G fO ji ( (L:luw(t) — 7"
+%|yj (t— 715 — s)y]*\r) ds + ZTZI e i |74 fOT kji(s)e“dswj @®)|
= il Gt [T kgi(s)e i (t = 7y — S)ds) 2 nts
(N =re; @) |vs (O +reX Y0 [dig | P (Elaa(t) — 27" 4+ =2y (8) — y;[7)
+re YT (] Qi ) Fig(s (T_1|yj( )=y "+ Hai(t — oi — s) —ai]") ds
+Z 1|113|Qz€/\0” fo i3 ( (“i(t)_UZ(t_U j — ))ds)
(60 —mwﬁ(r—l) 7 (13l 5 + 111G ] hsi(s)ds)
+ 20T Enr (Pildis] + Qi|l~ij|€w” ) Kij(s) ASdS)) u;(t)
F0T L (s N = e+ (r =1 YT (|d,]|P +11351Qi [y Fij(s)ds)

+ > & (Fylbjal + Gyllal e [T kji(s)e™ds) ) vy (t)
<0

IN

IN

IA

for t > 0,t # tg,k =1,2,--- . When t = t;, we obtain from (4.5) that

Vi)
n m T s th
oy e (uxtz) FE G [T k() [ w(z)dzds)

tk —Tji—S$
n m 4 o s t+
+ iy Ent (vj(t:) 20 i |Qi [ K (s)e ftfﬂ,_rs Uz‘(z)dzd3>
—
n m T s 4.
:ZM&@@HEMWQL@@aﬁ%Mmmm) (47)

m n 7 o7 s [tk
0 s (80 + X0 B 1Qu fi Rig(9)e™ [ wi(z)dzds)
<V(te), k=1,2,
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It follows from (4.6) and (4.7) that
V() < V(0) for all ¢ > 0. (4.8)
By the definition of V (¢) and (4.8), we have

& <Z wit) + Zw(ﬂ)
n T 0
<> & <u +ZG 11l w/ 5i(s )e“/ vj(z)dzd8>
m o 0
3 6 ( +ZQ gl / B [ m(z)dzds)

<¢r Z (1 + ZQi\Ziﬂe*”“ /g kij(s)e (o + 8)d8> sup  wi(t)
0

i1 =1 —h<t<0
+¢&* Z 1+ Z Gylijiler / i()e™ (150 + s)ds sup  v;(t)

= —h<t<0
<ery sup wu;(t) + sup v, (t)

<; —h<t<0 JZ:; —h<t<0 !

where 57 = min{flaf?a T 75”-‘-?71}7 §+ = max{glag% to 7§n+M}a

o {fgix (143270 Qillijlers [ Kij(s)er (o3 + s)ds),

Jpax (1+ iy Gillgaler [ kjis)e (s + S)dS)} >

It leads to

{Zm( — " +Z|yj =l }
=1
€+L % 2 n T
s(£> e " {Zsup |G, (5) — 27| +Z sup [y, (s |}
1

- h<s<0 —h<s<0

1
_Meat{z sup |¢a, (s —xl\ +Z sup |¢y] |}

1=

=1 —h<t=o0 —, —h<s<o0

1
where M = (f—j) "> 1,a= % > 0. Therefore, the equilibrium z* of system

(1.2) is globally exponentially stable. This completes the proof.

Remark 4.1. The method and analysis techniques employed here are different
from [8-10, 27], and the conditions ensuring the stability of the equilibrium point
are simpler and easier to verified than [27].
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Let » — 1 in Theorem 4.1, we get the corollary immediately.

Corollary 4.1. Assume that (A1) — (A4) and (Ag) hold. Further,

(As) Lip(i(te) = —Binwi(tr), Jin(y;(tr)) = —viwy; (te), 11— aue — 1 <0,

|1 — Bx] —1 < 0. Then system (1.2) admits one equilibrium which is globally
exponential stable.

5. Applications and an illustrative example

For (1.2), let 7 — 00,0 — oo and [;* kj; )ds-lfo s)ds = 1, by
Corollary 3.1, one can obtain Theorem 3.1 in [10], i

Corollary 5.1. Suppose conditions (A1) — (Az) in [10] hold. Further,
(Ag) a; > 300 (Gilhij| + Fillig)), a; > 3072, Gjlhyl + Fjllyl), i=1,--+ m,
j=1,--- m. Then (1.1) has a unique equilibrium point.
Similarly, one can obtain the result of existence of equilibrium point of the
models in [9,20]. It is in this sense that we extend the previously known results.
Considering the following system studied by Wu [8]:

ui(t) = —ai(t)e( uZ +Z ,1 Jz () f3(v;)

+ZJ 1 ” fo il gJ UJ (t — 715 —s))ds + Li(t)
v;(t) v] )+ Zm t)pi(us)

+Z7,:1 i fo i ( qZ ui(t — o5 — 8))ds + J;(¢)

By similar proof of Theorem 3.1, we can derive the sufficient conditions ensuring
the existence of a unique equilibrium point of (5.1). For function f(t), denote
[T =supycscoo |f(t)], then we have

Corollary 5.2. Suppose (A1) — (A4) hold. Further,

(5.1)

A =P
;o 3 . . i .
(Ag) IV = ( P is a nonsingular M-matrix,
where P = (ﬁzg)nxmwF = (fji)mxru ﬁij = de] + Qz +f00 ij fji =

b+F + Z+G s Kji(s)ds, A,C are defined as Corollary 3.1. Then system (5.1)
has at least one equlhbrlum.

Remark 5.1. The conditions of the existence of a unique equilibrium point of
(5.1) are simpler and easier to verified than Theorem 4.2 in [8]. Particularly,
it shows that the condition (2) of Theorem 4.2 in [8] is unnecessary, hence, we
improve the main results [8].

Example. Let

z) (t) = —arer(x1(t)) + br1 f1(y1(t) + I fo k‘u(s 1(y1(t — 111 — 8))ds + I, t # tg,

x5 (t) = —azez(x2(t)) + b1z f1(y1(t)) + li2 fo k12(s)g1(y1(t — 112 — s))ds + Iz, t # ty,

Azi(t) = 21(tF) —21(t7) = —Bu(21(t)), t = tk,

Azy(t) = z2(tF) — 22(t7) = —far(22(1)), t = ti,

Y1 (t) = —c1hi(y1(t)) + di1p1 (21 (1)) + darpa(z2(t)iin f k11 (s (5.2)
q1(z1(t — 011 — 8))ds + lo1 fo Ko1(s)qa(za(t — 021 — s))ds + J1,

Ayi1(t) = y1(tT) —y1(t7) = =761 (), t = tx,
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where e;(u) = &, hy(u) = u, fi(u) = gi(u) = |u], pi(u) = qi(u) = &, fori
12 w € R oap =2, apg = 4, C1:7b11: 37111:§7k11():k12(8):
keon (s ) =3I, /Blk = 5% =3, Mk = é- Then 01 =02 = %791 = 17F1 = Gl =

=

7—7

LPA=P,=Q1=Qx=7 i i
By simple calculation, we have fi1; = 31, fio = 43,p11 = 2,P21 = 3, and
1 0 -2
the corresponding matrix I'' = 0 2 =3 | . It is easy to show that there
-1 -3 7
exists a constant vector { = (2, %,2)” > 0 such that I''¢ > 0. Using Lemma

2.1, one obtains that IV is a nonsingular M-matrix and (Ag) holds. By easy
verification, (Ag) holds too. Therefore, by Corollary 4.1, one concludes that
(5.2) admits an equilibrium which is globally exponentially stable.
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