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A FULL-NEWTON STEP INFEASIBLE INTERIOR-POINT

ALGORITHM FOR LINEAR PROGRAMMING BASED ON A

SELF-REGULAR PROXIMITY†

ZHONGYI LIU∗ AND YUE CHEN

Abstract. This paper proposes an infeasible interior-point algorithm with
full-Newton step for linear programming. We introduce a special self-
regular proximity to induce the feasibility step and also to measure prox-
imity to the central path. The result of polynomial complexity coincides
with the best-known iteration bound for infeasible interior-point methods,
namely, O(n logn/ε).
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1. Introduction

We are concerned with the (LP ) problem given in the following standard
form:

(P ) min cTx

s.t. Ax = b, x ≥ 0,

and its associated dual problem:

(D) max bT y

s.t. AT y + s = c, s ≥ 0,

where c, x, s ∈ Rn, b, y ∈ Rm and A ∈ Rm×n is of full row rank.
For a comprehensive learning about interior-point methods (IPMs), we refer

to Roos et al. [7]. In Roos [8], a full-Newton step infeasible interior-point
algorithm for linear programming (LP ) was presented and he also proved that
the complexity of the algorithm coincides with the best known iteration bound
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for infeasible IPMs. In Liu and Sun [1], Mansouri and Roos [3], they defined the
feasibility step by special search directions, respectively. Such directions can be
seen as parameterized affine scaling directions.

Recently Peng et al. [5] introduced a new class of primal-dual IPMs based on
self-regular proximities. These methods do not use the classic Newton directions.
Instead they use a direction that can be characterized as a steepest descent
direction (in a scaled space) for a so-called self-regular barrier function. Each
such barrier function is determined by a simple univariate self-regular function,
called its kernel function. Salahi [9] extended the method in Peng and Terlaky
[6] to infeasible IPMs. For both of them, the center path neighborhood are
defined by the proximity function and they don’t utilize any inner iteration to
get centered.

Inspired by Salahi [9] and Liu and Sun [2], we develop an infeasible IPMs
with full-Newton steps for (LP ). The search direction of the feasibility step is
induced by a proximity function. We also use a norm-based proximity to define
the central neighborhood. We can get the same result of polynomial complexity,
that is, n logn/ε, which is the best currently for infeasible IPMs.

Throughout the paper ‖ · ‖ denotes the l2-norm. We use Φ to denote the
proximity function though Φ(v) and Φ(x, s;µ) have different domains.

2. The statement of algorithm

As usual for infeasible IPMs we assume that the initial iterates (x0, y0, s0) are
as follows:

x0 = s0 = ζe, y0 = 0, µ0 = ζ2,

where e is the all-one vector of length n, µ0 is the initial dual gap and ζ > 0 is
such that

‖x∗ + s∗‖∞ ≤ ζ,

for some optimal solution (x∗, y∗, s∗) of (P ) and (D). It is not trivial to find such
initial feasible interior point. One method to overcome this difficult is to use the
homogeneous self-dual embedding model by introducing artificial variables. The
embedding technique was presented first by Ye et al. [10] and described in detail
in Part I of Roos et al. [7].

It is generally agreed that the total number of inner iterations required by the
algorithm is an appropriate measure for its efficiency and this number is referred
to as the iteration complexity of the algorithm. Using (x0)T s0 = nζ2, the total
number of iterations in the algorithm of Roos [8] is bounded above by

24n log
max{nζ2, ‖r0b‖, ‖r0c‖}

ε
, (1)

where r0b and r0c is the initial residual vectors:

r0b = b−Ax0,
r0c = c−AT y0 − s0.



Infeasible IPMs based on self-regular proximity 121

Up to a constant factor, the iteration bound (1) was first obtained by Mizuno
[4] and it is the best known iteration bound for infeasible IPMs.

Now we recall the main ideas underlying the algorithm in Roos [8]. For any
ν with 0 < ν ≤ 1 we consider the perturbed problem (Pν), defined by

(Pν) min{(c− νr0b )
Tx : Ax = b− νr0b , x ≥ 0},

and its dual problem (Dν), which is given by

(Dν) max{(b− νr0b )
T y : AT y + s = c− νr0c , s ≥ 0}.

Note that if ν = 1 then x = x0 yields a strictly feasible solution of (Pν), and
(y, s) = (y0, s0) a strictly feasible solution of (Dν). Due to the choice of the
initial iterates we may conclude that if ν = 1 then (Pν) and (Dν) each have a
strictly feasible solution, which means that both perturbed problems then satisfy
the well known interior-point condition (IPC).

Lemma 1. ([8, Lemma 1.1]) The perturbed problems (Pν) and (Dν) satisfy the
IPC for each ν ∈ (0, 1], if and only if the original problems (P ) and (D) are
feasible.

Assuming that (P ) and (D) are feasible, it follows from Lemma 1 that the
problems (Pν) and (Dν) satisfy the IPC, for each ν ∈ (0, 1]. And then their
central paths exist. This means that the system

b−Ax = νr0b , x ≥ 0,

c−AT y − s = νr0c , s ≥ 0,

xs = µe

has a unique solution for every µ > 0, where xs denotes a Hadamard (compo-
nentwise) product of two vectors x and s. If ν ∈ (0, 1] and µ = νζ2 we denote
this unique solution in the sequel as (x(ν), y(ν), s(ν)). As a consequence, x(ν) is
the µ-center of (Pν) and (y(ν), s(ν)) the µ-center of (Dν). Due to this notation
we have, by taking ν = 1,

(x(1), y(1), s(1)) = (x0, y0, s0) = (ζe, 0, ζe).

One measures proximity of iterates (x, y, s) to the µ-center of the perturbed
problems (Pν) and (Dν) by the quantity δ(x, s;µ), which is defined as follows:

δ(x, s;µ) := δ(v) :=
1

2
‖v − v−1‖, where v :=

√
xs

µ
. (2)

Initially one has x = s = ζe and µ = ζ2, whence v = e and δ(x, s;µ) = 0. In the
sequel assuming that at the start of each iteration, δ(x, s;µ) is smaller than or
equal to a (small) threshold value τ > 0. So this is certainly true at the start of
the first iteration.

For the feasibility step in Roos [8] they used search directions ∆fx, ∆fy and
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∆fs that are (uniquely) defined by the system

A∆fx = θνr0b , (3)

AT∆fy +∆fs = θνr0c , (4)

s∆fx+ x∆fs = µe− xs. (5)

Now we describe one main iteration of the algorithm in Roos [8]. Suppose that
for some ν ∈ (0, 1] one has x, y and s satisfying the feasibility conditions (3)-(4),
and such that

xT s = nµ and δ(x, s;µ) ≤ τ,

where µ = νζ2. Each main iteration consists of a so-called feasibility step, a
µ-update, and a few centering steps, respectively. First, we find new iterates
xf , yf and sf that satisfy (3) and (4) with ν replaced by ν+. As we will see,
by taking θ small enough this can be realized by one feasibility step, to be de-
scribed below soon. So, as a result of the feasibility step we obtain iterates that
are feasible for (Pν+) and (Dν+). Then we reduce ν to ν+ = (1 − θ)ν, with
θ ∈ (0, 1), and apply a limited number of centering steps with respect to the
µ+-centers of (Pν+) and (Dν+). The centering steps keep the iterates feasible
for (Pν+) and (Dν+), their purpose is to get iterates x+, y+ and s+ such that
(x+)T s+ = nµ+, where µ+ = ν+ζ2 and δ(x+, s+;µ+) ≤ τ . This process is re-
peated until the duality gap and the norms of the residual vectors are less than
some prescribed accuracy parameter ε.

It can easily be understood that if (x, y, s) is feasible for the perturbed prob-
lems (Pν) and (Dν) then after the feasibility step the iterates satisfy the feasibil-
ity conditions for (Pν+) and (Dν+), provided that they satisfy the nonnegativity
conditions. Assuming that before the step δ(x, s;µ) ≤ τ holds, and by taking θ
small enough, it can be guaranteed that after the step the iterates

xf = x+∆fx, yf = y +∆fy, sf = s+∆fs

are nonnegative and moreover δ(xf , sf ;µ+) ≤ 1/
√
2, where µ+ = (1 − θ)µ. So,

after the µ-update the iterates are feasible for (Pν+) and (Dν+) and µ is such

that δ(xf , sf ;µ) ≤ 1/
√
2.

In the centering steps, starting at the iterates (x, y, s) = (xf , yf , sf ) and
targeting at the µ-centers, the search directions ∆x,∆y,∆s are the usual primal-
dual Newton directions, (uniquely) defined by

A∆x = 0,

AT∆y +∆s = 0,

s∆x+ x∆s = µe− xs.

Denoting the iterates after a centering step as x+, y+ and s+, we recall the
following results from Roos [7].
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Lemma 2. If δ := δ(x, s;µ) ≤ 1, then the primal-dual Newton step is feasi-
ble, i.e., x+ and s+ are nonnegative, and (x+)T s+ = nµ. Moreover, if δ :=

δ(x, s;µ) ≤ 1/
√
2, then δ(x+, s+;µ) ≤ δ2.

The centering steps serve to get iterates that satisfy xT s = nµ+ and δ :=
δ(x, s;µ) ≤ τ , where τ is (much) smaller than 1/

√
2. By using Lemma 2, the

required number of centering steps can easily be obtained. Because after the
µ-update we have δ = δ(xf , sf ;µ+) ≤ 1/

√
2, and hence after k centering steps

the iterates (x, y, s) satisfy

δ(x, s;µ+) ≤ (
1√
2
)2

k

.

From this one easily deduces that no more than

log2(log2
1

τ2
) (6)

centering steps are needed.
Defining

dfx :=
v∆fx

x
, dfs :=

v∆fs

s
, (7)

with v as defined in (2). The system which defines the search directions ∆fx, ∆fy
and ∆fs, can be expressed in terms of the scaled search directions dfx and dfs as
follows:

Ādfx = θνr0b ,

ĀT ∆fy

µ
+ dfs = θνvs−1r0c ,

dfx + dfs = v−1 − v,

where

Ā = AV −1X, V = diag(v), X = diag(x).

Note that the right-hand side of the third equation in the system is the negative
gradient induced by the logarithmic barrier function

Ψ(v) :=

n∑

i=1

ψ(vi), vi =

√
xisi
µ

,

whose kernel function is

ψ(t) =
1

2
(t2 − 1)− log t.
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In this paper the feasibility step is a slight modification of the classic primal-dual
Newton direction. The feasibility direction is defined by a new system as follows

Ādfx = θνr0b ,

ĀT ∆fy

µ
+ dfs = θνvs−1r0c ,

dfx + dfs = −∇Φ(v),

where the kernel function of Φ(v) is

φ(t) :=
1

2
(t− 1

t
)2.

Since φ′(t) = t− 1/t3, the third equation in the system can be written as

dfx + dfs = v−3 − v. (8)

Note that ‖∇Φ(v)‖ = 0 if and only if v = e, thus ‖∇Φ(v)‖ is also a suitable
proximity. This norm-based proximity is used to define the central neighbor-
hood. Now we give a more formal description of the algorithm in Figure 1.

Primal-Dual Infeasible IPMs

Input:
Accuracy parameter ε > 0;
barrier update parameter θ, 0 < θ < 1;
threshold parameter τ > 0.

begin
x := ζe; y := 0; s := ζe; ν = 1;
while max{xT s, ‖b−Ax‖, ‖c−AT y − s‖}≥ ε do
begin
feasibility step: (x, y, s) := (x, y, s) + (∆fx,∆fy,∆fs);
µ-update: µ := (1− θ)µ;
centering steps:
while ‖∇Φ(v)‖ ≥ τ do
(x, y, s) := (x, y, s) + (∆x,∆y,∆s);

end while
end

end

Figure 1: Algorithm

Before we go to the next section, we give several lemmas, which are needed
for the analysis of the algorithm.
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Lemma 3. ([3, Lemma A.1]) For i = 1, . . . ,m, let fi : R+ → R denote a convex
function. Then, for any nonzero vector z ∈ Rn+, the following inequality

n∑

i=1

fi(zi) ≤ 1

eT z

n∑

j=1

zj


fj(e

T z) +
∑

i 6=j

fi(0)




holds.

The next lemma focuses on the effect of the feasible search direction induced
by the self-regular proximity function.

Lemma 4. If Φ(v) := Φ(x, s;µ) ≤ 2, then the primal-dual Newton step is
feasible, i.e., x+ and s+ are nonnegative, and (x+)T s+ = nµ. Moreover, if
Φ(v) := Φ(x, s;µ) ≤ 1, then Φ(x+, s+;µ) ≤ ( 1√

2
Φ(v))2.

Proof. The result can easily be obtained by the special relation between δ and
Φ, see Lemma 2. ¤

The following lemma quantifies the effect on the proximity measure if v is
replaced by ṽ =

√
1− θv.

Lemma 5. Let (x, s) be a positive primal-dual pair and µ > 0 such that xT s =
nµ. Moreover let Φ(v) = Φ(x, s;µ) and ṽ :=

√
1− θv. Then

Φ(ṽ) =
1

1− θ
Φ(v) +

θ2n

1− θ
.

Proof.

Φ(ṽ) =
1

2
‖
√
1− θv − 1√

1− θ
v−1‖2

=
1

2
‖ 1√

1− θ
(v − v−1) + (

√
1− θv − 1√

1− θ
v)‖2

=
1

2

1

1− θ
‖v − v−1‖2 + θ2n

1− θ

=
1

1− θ
Φ(v) +

θ2n

1− θ
,

where the third equality is due to ‖v‖2 = n and the orthogonality between v
and v−1 − v. ¤

The following result tells us that the relation between the norm-based prox-
imity ‖∇Φ(v)‖ and the proximity function Φ(v).

Lemma 6. One has 1
2‖∇Φ(v)‖2 ≥ Φ(v).

Proof. Since

1

2
(t−3 − t)2 − 1

2
(t−1 − t)2 =

1

2
(t−2 − 1)2(t−2 + 2) ≥ 0, ∀ t > 0,

thus the lemma follows. ¤
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3. Analysis of the feasibility step

Let x, y and s denote the iterates at the start of an iteration, and assume that
‖∇Φ(v)‖ ≤ τ . Recall that in the first iteration we have ‖∇Φ(v)‖ = 0.

3.1.Effect of the feasibility step. According Lemma 4, we need to show that
Φ(xf , sf ;µ+) ≤ 1 after the feasibility step, i.e., that the new iterates are positive
and within the region where the Newton process targeting at the µ+-centers of
(Pν+) and (Dν+) is quadratically convergent.

Now using (8) and xs = µv2 we may write

xfsf = xs+ (s∆fx+ x∆fs) + ∆fx∆fs

= µ2(xs)−1 +∆fx∆fs = µ(v−2 + dfxd
f
s ). (9)

Lemma 7. The new iterates are certainly strictly feasible if and only if v−2 +
dfxd

f
s > 0.

Proof. Note that if xf and sf are positive then (9) makes clear that v−2+dfxd
f
s >

0. Following Lemma 4.1 in Mansouri and Roos [3], the converse can be proved.
Thus the lemma follows. ¤

Using (7) we may also write

xf = x+∆fx = x+
xdfx
v

=
x

v
(v + dfx), (10)

sf = s+∆fs = s+
sdfs
v

=
s

v
(v + dfs ). (11)

Lemma 8. The new iterates are certainly strictly feasible if

‖dfx‖2 <
1

ρ(Φ(v))
and ‖dfs‖2 <

1

ρ(Φ(v))
, (12)

where

ρ(Φ(v)) := (Φ(v) + 1) +
√
(Φ(v) + 1)2 − 1.

Proof. It is clear from (10) that xf is strictly feasible if and only if v + dfx > 0.
This certainly holds if ‖dfx‖ < min(vi). Since Φ(v) = 1

2‖v − v−1‖2, the minimal

value t that an entry of v can attain will satisfy t ≤ 1 and t2+1/t2 = 2Φ(v)+2.
The last equation implies t4 − 2(Φ(v) + 1)t2 + 1 = 0, which gives t2 = (Φ(v) +

1)−
√
(Φ(v) + 1)2 − 1 = 1/ρ(Φ(v)). This proves the first inequality in (12). The

second inequality can be obtained in the same way. ¤

The proof of Lemma 8 makes clear that the elements of the vector v satisfy

1

ρ(Φ(v))
≤ v2i ≤ ρ(Φ(v)), i = 1, . . . , n. (13)

In the sequel we denote

ωi := ωi(v) :=
1

2

√
|dfxi|2 + |dfsi|2,



Infeasible IPMs based on self-regular proximity 127

and

ω := ω(v) := ‖(ω1, . . . , ωn)‖.

This implies

(dfx)
T dfs ≤ ‖dfx‖‖dfs‖ ≤ 1

2
(‖dfx‖2 + ‖dfs‖2) ≤ 2ω2,

|dfxidfsi| = |dfxi||dfsi| ≤
1

2
(|dfxi|2 + |dfsi|2) ≤ 2ω2

i ≤ 2ω2, 1 ≤ i ≤ n.

Lemma 9. Assuming v−2 + dfxd
f
s > 0, one has

2Φ(vf ) ≤ 2

1− θ
Φ(v) +

θ2n

1− θ
+

2ω2

1− θ
+

2(1− θ)ρ(Φ(v))4ω2

1− 2ρ(Φ(v))2ω2
.

Proof.

(vf )2 =
µ(v−2 + dfxd

f
s )

µ+
=

v−2 + dfxd
f
s

1− θ
,

hence according to (2),

2Φ(vf ) =

n∑

i=1

(
(vfi )

2 + (vfi )
−2 − 2

)

=
n∑

i=1

(
v−2
i + dfxid

f
si

1− θ
+

1− θ

v−2
i + dfxid

f
si

− 2

)

≤
n∑

i=1

(
v−2
i + 2ω2

i

1− θ
+

1− θ

v−2
i − 2ω2

i

− 2

)
.

For each i we define the function

fi(zi) =
v−2
i + zi
1− θ

+
1− θ

v−2
i − zi

− 2, i = 1, . . . , n.

One can easily verify that if v−2
i − zi > 0 then fi(zi) is convex in zi. Taking

zi = 2ω2
i , we can require

v−2
i − 2ω2

i > 0.

By using (13), this certainly holds if

2ω2 <
1

ρ(Φ(v))
. (14)
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We therefore may use Lemma 3 and give

2Φ(vf ) ≤
n∑

j=1

fj(ωj) ≤ 1

2ω2

n∑

i=1

2ω2
j


fj(2ω

2) +
∑

i 6=j

fi(0)




=
1

2ω2

n∑

j=1

[
2ω2

j

((v−2
j + 2ω2

1− θ
+

1− θ

v−2
j − 2ω2

− 2
)

+
∑

i6=j

(
v−2
i

1− θ
+

1− θ

v−2
i

− 2

))]
.

Using Lemma 5, we obtain

∑
i6=j

(
v−2
i

1− θ
+

1− θ

v−2
i

− 2

)
=

n∑
i=1

(
v−2
i

1− θ
+

1− θ

v−2
i

− 2

)
−
(

v−2
j

1− θ
+

1− θ

v−2
j

− 2

)

=
2

1− θ
Φ(v) +

2θ2n

1− θ
−
(

v−2
j

1− θ
+

1− θ

v−2
j

− 2

)
.

Then

2Φ(vf )

≤ 2

1− θ
Φ(v) +

2θ2n

1− θ

+
1

2ω2

n∑
j=1

2ω2
j

(
v−2
j + 2ω2

1− θ
+

1− θ

v−2
j − 2ω2

− 2− (
v−2
j

1− θ
+

1− θ

v−2
j

− 2)

)

=
2

1− θ
Φ(v) +

2θ2n

1− θ
+

2ω2

1− θ
+

1

2ω2

n∑
j=1

2ω2
j

(1− θ)2ω2

v−2
j (v−2

j − 2ω2)

≤ 2

1− θ
Φ(v) +

2θ2n

1− θ
+

2ω2

1− θ
+

(1− θ)2ω2

1
ρ(Φ(v))2

( 1
ρ(Φ(v))2

− 2ω2)

=
2

1− θ
Φ(v) +

2θ2n

1− θ
+

2ω2

1− θ
+

2(1− θ)ρ(Φ(v))4ω2

1− 2ρ(Φ(v))2ω2
.

¤

We conclude this section by presenting a value that we don’t allow ω to exceed.
We observe that because we need to have Φ(vf ) ≤ 1, it follows from Lemma 9
that it suffices if

2

1− θ
Φ(v) +

2θ2n

1− θ
+

2ω2

1− θ
+

2(1− θ)ρ(Φ(v))4ω2

1− 2ρ(Φ(v))2ω2
≤ 2. (15)

At this stage we decide to choose

τ =
1

4
, θ =

α

4
√
n
, α ≤ 1. (16)
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Since the left-hand side of (15) is monotonically increasing with respect to ω2,
then, for n ≥ 1 and ‖∇Φ(v)‖ ≤ τ (Lemma 6 implies Φ(v) ≤ 1

2‖∇Φ(v)‖2 ≤ 1
2τ

2),
together with (14), one can verify that

ω ≤ 1

2
√
2

⇒ Φ(vf ) ≤ 1. (17)

Lemma 6 has showed the relation between ‖∇Φ(v)‖ and Φ(v), but it isn’t
enough to know when ‖∇Φ(v)‖ ≤ τ can occur.

Lemma 10. If Φ(v) ≤ 1
256 , then ‖∇Φ(v)‖ ≤ 1

4 .

Proof. Assume that τ0 = 1/256, then

1

2
(t− t−1)2 ≤ τ0. (18)

Thus the above inequality reduces to{
h1(t) := t2 −√

2τ0t− 1 ≤ 0, t ≥ 1,
h2(t) := −t2 −√

2τ0t+ 1 ≤ 0, t < 1.

Note the function h1(t) is monotone increasing with respect to t ≥ 1 and h2(t)
is monotone decreasing with respect to t < 1, and they both attain a minimum
at t = 1. Then we can easily get, for

√
τ0 + 2−√

τ0√
2

≤ t ≤
√
τ0 + 2 +

√
τ0√

2
, (19)

the inequality (18) holds. Note that we set τ0 = 1/256, the inequality (19)
reduces to

0.9569 ≤ t ≤ 1.0454. (20)

Similarly, now we consider{
u1(t) := 4t4 − t3 − 4 ≤ 0, t ≥ 1,
u2(t) := −4t4 − t3 + 4 ≤ 0, t < 1.

(21)

We can verify, for all t in (20), the inequality (21) holds, which implies |t−3−t| ≤
1
4 . ¤

3.2.Upper bound for ω(v). Let us denote the null space of the matrix Ā as
L. So,

L := {ξ ∈ Rn : Āξ = 0}.
Obviously, the affine space {ξ ∈ Rn : Āξ = θνr0} equals dfx+L. The row space
of Ā equals the orthogonal complement L⊥ of L, and dfs ∈ θνvs−1r0c + L⊥. We
recall a lemma from Roos [8] except that we use v−3 − v instead of v−1 − v.

Lemma 11. Let q be the (unique) point in the intersection of the affine spaces
dfx + L and dfs + L⊥. Then

2ω(v) ≤
√
‖q‖2 + (‖q‖+ ‖∇Φ(v)‖)2.
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Recall from (17) that in order to guarantee that Φ(vf ) ≤ 1 we want to have

ω ≤ 1/(2
√
2). Due to Lemma 11 this will certainly hold if ‖q‖ satisfies

‖q‖2 + (‖q‖+ ‖∇Φ(v)‖)2 ≤ 1

2
. (22)

Now still from Roos [8], we can get

√
µ‖q‖ ≤ θνζ

√
eT (

x

s
+

s

x
). (23)

To further proceed we need upper and lower bounds for the elements of the
vectors x and s.

3.3.Bounds for x/s and s/x. Recall that x is feasible for (Pν) and (y, s) for
(Dν) and, moreover ‖∇Φ(v)‖ ≤ τ , i.e., these iterates are close to the µ-centers
of (Pν) and (Dν). Based on this information we need to estimate the sizes of the

entries of the vectors x/s and s/x. Since τ0 = 1/256, namely, δ(v) ≤ 1/(32
√
2)

according to the relation between δ(v) and Φ(v), we can again use a result from
Roos [8], namely, Corollary A.10, which gives

√
x

s
≤ 10x(µ, ν)√

µ
,

√
s

x
≤ 10s(µ, ν)√

µ
.

Note that Corollary A.10 in Roos [8] is not dependent on Ψ(v) except the con-
stants τ ′ and χ(τ ′), that is to say, the result still holds true after we use the new
direction and the new proximity function. Substitution into (23) yields

√
µ‖q‖ ≤ θνζ

√
100eT (

x(µ, ν)2

µ
+

s(µ, ν)2

µ
).

This implies

µ‖q‖ ≤ 10θνζ
√
‖x(µ, ν)‖2 + ‖s(µ, ν)‖2.

By using µ = µ0ν = ζ2ν and θ = α/(4
√
n), we obtain the following upper bound

for the norm of q:

‖q‖ ≤ 5α

2ζ
√
n

√
‖x(µ, ν)‖2 + ‖s(µ, ν)‖2.

Define

κ(ζ, ν) =

√
‖x(µ, ν)‖2 + ‖s(µ, ν)‖2

ζ
√
n

, 0 < ν ≤ 1, µ = µ0ν,

and

κ̄(ζ) = max
0<ν≤1

κ(ζ, ν),

we may have

‖q‖ ≤ 5

2
ακ̄(ζ).
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We find in (22) that in order to have Φ(vf ) ≤ 1, we should have ‖q‖2 + (‖q‖+
‖∇Φ(v)‖)2 ≤ 1/2. Note that ‖∇Φ(v)‖ ≤ τ = 1

4 , it suffices if q satisfies ‖q‖2 +
(‖q‖ + 1

4 )
2 ≤ 1/2. This holds if and only if ‖q‖ ≤ 1/4. We conclude that if we

take

α =
1

10κ̄(ζ)
, (24)

we will certainly have Φ(vf ) ≤ 1. Following Roos [8], we can prove that κ̄(ζ) =
2
√
n.

4. Iteration bound

In the previous sections we have found that if at the start of an iteration the
iterates satisfy ‖∇Φ(v)‖ ≤ τ , with τ as defined in (16), then after the feasibility
step, with θ as in (16), and α as in (24), the iterates satisfy Φ(x, s;µ+) ≤ 1.

Before we enter the central neighborhood, we decrease Φ(v) from 1 to 1/256.
According to (6), at most

log2(log2 256
2) = 4

centering steps suffice to get iterates that satisfy ‖∇Φ(x, s;µ+)‖ ≤ τ . So each
iteration consists of at most 4 so-called ‘inner’ iterations, in each of which we
need to compute a new search direction. In each main iteration both the duality
gap and the norms of the residual vectors are reduced by the factor 1−θ. Hence,
using (x0)T s0 = nζ2, the total number of iterations is bounded above by

1

θ
log

max{nζ2, ‖r0b‖, ‖r0c‖}
ε

.

Since

θ =
α

4
√
n
=

1

40
√
nκ̄(ζ)

,

the total number of inner iterations is therefore bounded above by

320n log
max{nζ2, ‖r0b‖, ‖r0c‖}

ε
.

5. Numerical implementation

We test the algorithm in this section. The code is written in MATLAB. The
computer is Lenove PC (Intel(R) Core(TM)2 Duo CPU T9300 2.5Hz). We select
several small-size problems from NETLIB to show the algorithm is feasible. In
the list, the initial situation, max{nζ2, ‖r0b‖, ‖r0c‖} is denoted by Init. and the
number of outer iterations is denoted by Iter.. In fact this is a small-update
(short-step) interior-point algorithm with θ as above. So lots of iterations are
needed for finding solutions.
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Prob. m n Init. Iter. Time
E226 223 472 4.9303E3 37781 2.0139E3

AFIRO 27 51 832.8759 3712 3.7628
ADLITTLE 56 138 1.0616E4 11462 69.4210
BANDM 305 472 1.4999E3 35535 2.1406E3

BEACONFD 173 295 6.4029E3 23918 777.4179
BLEND 74 114 236.0117 7733 48.7910
CAPRI 271 482 7.8728E3 39484 2.1993E3
RECIPE 91 204 2.7486E3 15847 218.6644

6. Concluding remarks

In this paper we introduce a self-regular proximity in the infeasible interior-
point algorithm with full-Newton step for linear programming. We also use a
norm-based proximity to define the central neighborhood. Extensions to second-
order cone programming and semidefinite programming seem to be within reach.
We only discuss a special self-regular proximity in this paper, our future work
will focus on more general self-regular proximities.
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