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REAL ROOT ISOLATION OF ZERO-DIMENSIONAL

PIECEWISE ALGEBRAIC VARIETY†

JIN-MING WU∗ AND XIAO-LEI ZHANG

Abstract. As a zero set of some multivariate splines, the piecewise al-
gebraic variety is a kind of generalization of the classical algebraic vari-
ety. This paper presents an algorithm for isolating real roots of the zero-
dimensional piecewise algebraic variety which is based on interval evalua-
tion and the interval zeros of univariate interval polynomials in Bernstein
form. An example is provided to show the proposed algorithm is effective.
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1. Introduction

A polynomial real root isolation algorithm is an algorithm which, given a
polynomial f(x) with real coefficients, computes a sequence of disjoint intervals
each containing exactly one real root of f(x), and together containing all real
roots of f(x). In 1976, Collins and Akritas [2] gave an efficient algorithm for
polynomial real root isolation using Descarte’s rule of signs, which improved the
Uspensky original algorithm. In 2004, Rouillier and Zimmermann [7] gave a
generic algorithm which enables one to describe all the known algorithms based
on Descartes’ rule of sign and the bisection strategy in a unified framework.

Nowadays, isolating the real solutions of an algebraic variety or semi-algebraic
set (a system of polynomial equations, inequalities or inequations) has become
an important aspect of research in the field of computational real algebra. There
have been some works concerning this issue. The classical cylindrical algebraic
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decomposition method proposed by Collins in 1975, which was made more avail-
able in their work [1, 3]. In 2002, Xia and Yang [15] proposed an algorithm
based on Ritt-Wu method and Uspensky algorithm for isolating the real roots of
a semi-algebraic system with integer coefficients. The algorithm was improved
in their later work [16], where they gave a complete algorithm by using interval
arithmetic and it is faster.

The object we deal with in this paper is called piecewise algebraic variety
defined on n-dimensional simplex partition. Here, the piecewise algebraic variety
is always assumed to be zero-dimensional, i.e., it consists of a finite number of
points. Moreover, all the n-dimensional simplex are assumed to be in “general
position”, which means none of zeros lie on their boundary.

As the common zeros of a system of multivariate splines, the piecewise al-
gebraic variety is a kind of generalization of the classical algebraic variety. It
is important to study the interpolation by multivariate splines and piecewise
algebraic variety[9]. One of the important problems is isolating the real zeros of
a given univariate spline or a set of multivariate splines. Very recently, Wang
and the current author [11] proposed an algorithm for isolating the real zeros of
a given univariate spline function, which is primarily based on use of Descartes’
rule of signs and de Casteljau algorithm. The zeros of a given univariate spline
function can be viewed as a particular piecewise algebraic variety. In this paper,
based on interval evaluation and the interval zeros of univariate interval polyno-
mials in Bernstein representation, we present an new algorithm for isolating the
real roots of a relatively simplex zero-dimensional piecewise algebraic variety on
n-dimensional simplex partition.

The rest paper is organized as follows. In the next section, some basic defi-
nition of piecewise algebraic variety and the discussed object are introduced. In
section 3, we present an algorithm to isolate the interval zeros of a given interval
polynomial in Bernstein form. The main algorithm for isolating the real roots
of zero-dimensional piecewise algebraic variety is given in Section 4. Finally,
an example is provided to demonstrate the proposed method in Section 5 and
conclude this paper in Section 6.

2. Piecewise algebraic variety

The piecewise algebraic variety defined as the common intersection of sur-
faces represented by multivariate splines is a new topic in algebraic geometry.
Moreover, the piecewise algebraic variety will be also important in Computa-
tional Geometry, Computer Aided Geometrical Design and Image Processing.
Because of the possibility of {(x, y)|s|δi = si(x, y) = 0} ∩ δi = ∅, it is more diffi-
cult to study piecewise algebraic variety. A lot work on (real) piecewise algebraic
variety has been done by Wang and his research group [5, 10, 11, 12, 13, 14, 17].
Several basic definitions of piecewise algebraic variety defined on n-dimensional
simplex partition are reviewed.
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Let Ω be a polygonal region in Rn. Let ∆ be a regular n-dimensional simplex
partition of Ω and denote by ∆ = {δ1, δ2, · · · , δT }. Then δi = [Vi,1 · · ·Vi,n+1], i =
1, · · · , T is called a n-dimensional simplex or cell, where Vi,1, · · ·Vi,n+1 are the
vertices of δi. Obviously, the interior of simplex δi can be given by

δi = {x ∈ Rn | Hi,k(x) > 0, k = 1, · · · , n+ 1},
where supporting hyperplane Hi,k(x) = 0, k = 1, · · · , n+ 1 are the facets of δi.

Definition 1. [14] P (∆) = {s|δi ∈ R[x1, x2, · · · , xn], i = 1, 2, · · · , T} is denoted
by the piecewise polynomial ring with respect to partition ∆ on Ω, where s|δi are
polynomials corresponding to s on each cell δi. Moreover, Sµ(∆) = {s| s ∈
Cµ(∆)∩P (∆)} is called Cµ piecewise polynomial ring, where Cµ means that s
possesses µ order continuous partial derivatives.

For F ⊆ Sµ(∆), the zero set of F is defined to be z(F ) = {x ∈ Ω | s(x) =
0, ∀ s ∈ F}. Since Sµ(∆) is a Nöther ring, every ideal I has a finite of generators,
then z(F ) can be expressed as the common zeros of the splines s1, s2, · · · , sl.
Definition 2. [14] Let ∆ be a n-dimensional simplex partition of the region Ω. If

there exists s1, s2, · · · , sm ∈ Sµ(∆) such that X = z(s1, s2, · · · , sm) =
m⋂
i=1

z(si),

then X is called a Cµ piecewise algebraic variety with respect to ∆.

The object in this paper is zero-dimensional piecewise algebraic variety with
real coefficients. That’s to say, for each n-dimensional simplex δi, i = 1, · · · , T ,
we ought to discuss the algebraic variety in the interior of δi i.e.,

z(s1, · · · , sn)|δi :
{

s1,i(x) = 0, s2,i(x) = 0, · · · , sn,i(x) = 0,
Hi,k(x) > 0, k = 1, · · · , n+ 1.

(1)

where sk,i = sk|δi denote polynomials corresponding to sk on each cell δi.
Because the ideal generated by {s1, · · · , sn} is zero-dimensional, we can use

by Ritt-Wu method, Gröbner basis method or subresultant method [15] to trans-
form the system (1) into one or more systems in triangular form. Therefore, the
system (1) can be reduced into one or more systems in the form

z(s̃1, · · · , s̃n)|δi : {s̃1,i(x1) = 0, s̃2,i(x1, x2) = 0, · · · , s̃n,i(x1, x2, · · · , xn) = 0}∩δi
(2)

Therefore, the system (2) can be represented in Bernstein form as follows(denotes
by triangular algebraic variety for short)

z(f1, f2, · · · , fn+1) :





f1(τ1) = 0, f2(τ1, τ2) = 0, · · · , fn(τ1, τ2, · · · , τn) = 0,

fn+1(τ) :=
n+1∑
i=1

τi − 1 = 0, ∀ τk > 0, k = 1, · · · , n+ 1,

(3)
where τ = (τ1, τ2, · · · , τn+1) is the barycentric coordinates of a point x ∈ Rn

with respect to δi. Here, we omit the subscript i and replace s̃k,i with Bernstein
polynomial fk, k = 1, 2, · · · , n + 1 when the meaning is not confused for later
discussion.
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3. Interval polynomial

Interval operations have been first introduced by Moore [6]. It is used to tackle
the instability, and error analysis of numerical computation. In this section, we
firstly brief review interval evaluation, then we introduce the zeros of univariate
interval polynomials and present an algorithm to isolate the interval zeros of a
given interval polynomial.

Definition 3. [16, 8] Let f be an arithmetic expression of a polynomial in
R[x1, · · · , xn]. We replace all operands of f an intervals and replace all opera-
tions of f as interval operations and the result is denote by F . Then, F : I(R)n →
I(R) is called an interval evaluation, where I(R) denotes the set of all intervals.

Let F be an interval evaluation. If for all X,Y ⊆ D, X ⊂ Y implies F (X) ⊂
F (Y ), we call F a monotonic interval evaluation.

Theorem 1. [16, 8] An interval evaluation of any polynomial in R[x1, · · · , xn]
is a monotonic interval evaluation. Especially, this is true for univariate poly-
nomials.

An interval polynomial of degree k is a polynomial whose coefficients are
intervals, the Bernstein form of which is:

[f ](t) =

k∑

i=0

[fi]Bi,k(t), t ∈ [0, 1]. (4)

where

Bi,k(t) =
k!

(k − i)!i!
ti(1− t)k−i

is the ith Bernstein basis function of degree k, and [fi] = [f
i
, f i] is an interval.

Since Bi,k(τ) > 0, the two boundary polynomials of [f ](t)

[f l](t) =

k∑

i=0

f
i
Bi,k(t), [fu](t) =

k∑

i=0

f iBi,k(t). (5)

are called the lower boundary function and upper boundary function of [f ](t),
respectively.

The set of real zeros of the interval polynomial [f ](t) is defined as

R([f ]) = {t0 ∈ R | ∃ f(t) ∈ [f ](t), s.t. f(t0) = 0}.
Obviously,

R([f ]) = {t0 ∈ R | [f l](t0) ≤ 0 ≤ [fu](t0)},
then the zeros set of [f ](t) ia composed of several closed intervals. Each of these
intervals is called an interval zero of [f ](t).

It is from the results in [4] that we can easily have

Proposition 1. If [t0, t0] is an interval zero of [f ](t), then the endpoints t0
and t0 are the zeros of the lower boundary function [f l](t) and upper boundary
function [fu](t), respectively.
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Theorem 2. An interval polynomial [f ](t) of degree k has at most k interval
zeros.

Since each interval polynomial [f ](t) defined on [t1, t2] can be transformed

into an interval polynomial [f ](t̃) defined on [0, 1], i.e.,

[f ](t̃) =

k∑

i=0

[f̃i]Bi,k(t̃), t̃ ∈ [0, 1] (6)

under the coordinate transformation t̃ = t−t1
t2−t1

, t ∈ [t1, t2]. So from now on, we

use interval polynomial (4) for the later discussion without the meaning confused.
Since Bernstein basis function satisfies the property of partition of unity, it is

obvious that

[f l]([0, 1]) ⊂ [m[f l],M [f l]],

where m[f l] = min
1≤i≤k

f
i
and M [f l] = max

1≤i≤k
f
i
.

Similarly,

[fu]([0, 1]) ⊂ [m[fu],M [fu]],

where m[fu] = min
1≤i≤k

f i and M [fu] = max
1≤i≤k

f i.

Therefore,

[f ]([0, 1]) ⊂ [m[f l],M [fu]].

If an interval polynomial [f ](t), t ∈ [0, 1] completely lie below or above x-axis,
then f [t] has no real zero. If the interval polynomial [f l](t), t ∈ [0, 1] lie below
the x-axis and [fu](t), t ∈ [0, 1] lie above the x-axis, then [0, 1] is an interval zero
of f [t]. These facts conclude the following proposition which is the foundation
of the algorithm to isolate the interval zeros of a given interval polynomial.

Proposition 2. With the above notations, we have the results:
(1)If 0 6∈ [m[f l],M [fu]], then [0,1] is not a zero of [f ](t).
(2)If M [f l] < 0, m[fu] > 0, then [0, 1] is an interval zero of [f ](t).

For any interval, there are three cases to be considered. In case (1), we
discard the interval. In case (2), we save the interval. Otherwise, we bisection
the interval and test each interval until each interval is sufficiently small.

The numerical algorithm to find a set of intervals which bound the interval
zeros of a given interval polynomial [f ](t) is presented as follows.

Algorithm 1. Computing the interval zeros of interval polynomial on [0, 1]

Input An interval polynomial [f ](t) =
k∑

i=0

[f
i
, f i]Bi,k(t), t ∈ [0, 1], and a suffi-

ciently small positive tolerance ε.
Output A set S containing all the interval zeros of [f ](t).
Step 1 Set the initial interval I := [0, 1] and let S be an empty set.
Step 2 If 0 6∈ [m[f l],M [fu]], discard this interval and process the next interval.

Otherwise go to Step 3.



140 Jin-ming Wu and Xiao-Lei Zhang

Step 3 If M [f l] < 0, m[fu] > 0, or the width of I is less than the given tolerance
ε, then set S := S∪I. Otherwise divide I into two intervals at midpoints,
transform [f ](t) into form (6) on each subinterval, and go to Step 2.

Step 4 Union all the neighboring intervals in S.

4. Real root isolation of zero-dimensional piecewise algebraic variety

A natural idea is to isolate the real zeros of the first equation of the system (3)
on the interval [0, 1] and substitute each resulting interval in the rest of the equa-
tions and repeat the above computation. Therefore, we deal with polynomials
with “interval coefficients ”.

Definition 4. Let f(τ1, · · · , τi, τi+1) can be represented as

f(τ1, · · · , τi, τi+1) =

k∑

j=0

fj(τ1, · · · , τi)Bj,k(τi+1).

For any X = ([τ1, τ1], · · · , [τi, τi]) ∈ I(R)i, let Fj , j = 1, · · · , k be an interval
evaluation of fj in X and

[f ](τi+1) =

k∑

j=0

Fj([τ1, τ1], · · · , [τi, τi])Bj,k(τi+1).

Then [f ](τi+1) is called an interval evaluation polynomial of f(τ1, · · · , τi, τi+1).

The algorithm for isolating the real roots of the system in the form of (3) is
outlined below.

Algorithm 2. Real root isolation of triangular algebraic variety

Input A given triangular algebraic variety z(f1, f2, · · · , fn+1) in the form of
(3), and a given sufficiently small positive tolerance ε.

Output A set S of all the isolating intervals of barycentric coordinates for z(f1, f2,
· · · , fn+1).

Step 1 Compute the set of interval zeros of [f1](τ1) and denote by S(1) = {[τ1,j ,
τ1,j ], j = 1, · · · , n1}, where [f1](τ1) is an interval evaluation polynomial
of f1(τ1).

Step 2 If S(1) = ∅, then stop and TAV has no real zero. Otherwise, substitute
[τ1,j , τ1,j ] into f2(τ1, τ2) and obtain an interval evaluation polynomial

[f2]
(j)(τ2). Compute the set of interval zeros of [f2]

(j)(τ2) and denote by

S
(2)
j =

{
[τ1,jk , τ1,jk ]|k = 1, 2, · · · , kj

}
. Hence, S(2) is defined by

S(2) =

n1⋃

j=1

S
(2)
j =

{
[τ2,j , τ2,j ]|j = 1, 2, · · · , n2

}
.

Step 3 Inductively, we continue the similar procedure as Step 2 to obtain the
sequence {S(3), S(4), · · · , S(n+1)}.
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Therefore, the set of isolating intervals of barycentric coordinates for TAV is
S = S(1) × S(2) × · · · × S(n+1).

With the above preparations, we can easily give the algorithm for isolating
the real roots of zero-dimensional piecewise algebraic variety on n-dimensional
simplex partition.

Algorithm 3. Real root isolation of piecewise algebraic variety

Input A given piecewise algebraic variety z(s1, s2, · · · , sn) in the form of (1).
Output A set S of all the isolating intervals of barycentric coordinates for z(s1,

s2, · · · , sn).
Step 1 Set i := 1 and S = ∅.
Step 2 Transform z(s1,i, s2,i, · · · , sn,i) into the form (2) and thehe resulting

polynomials are expressed in Bernstein form of (3).
Step 3 Compute z(s1,i, s2,i, · · · , sm,i) in the interior of δi by using Algorithm 2

and denote by S(i) the isolating intervals and set S := S ∪ S(i).
Step 4 Let i := i+ 1. If i ≤ T , then go to Step 2. Otherwise, stop.

Therefore, S is the set of isolating intervals of barycentric coordinates for
zero-dimensional piecewise algebraic variety z(s1, · · · , sn).

5. Numerical example

In this section, an example is provided to demonstrate the proposed algorithm
for isolating the zeros of a given zero-dimensional piecewise algebraic variety.

Example 1. Let ∆ = {δ1, δ2, δ3, δ4} be a triangulation of a quadrangle VAVBVCVD

in R2, where δ1 = [VDVOVA], δ2 = [VDVCVO], δ3 = [VCVBVO], δ4 = [VBVAVO],
VA = (1, 0), VB = (0,−1), VC = (−1, 0), VD = (0, 1) and VO = (0, 0) (see
Figure 1).

Suppose that f, g ∈ S1
3(∆) are defined as follows:

• on cell δ1:

{
f1(x, y) = f |δ1 = x3 + y2 − 5

8
g1(x, y) = g|δ1 = y3 − x

• on cell δ2:

{
f2(x, y) = f |δ2 = f1(x, y) + x2(x+ y)
g2(x, y) = g|δ2 = g1(x, y)− x2(2y)

• on cell δ3:

{
f3(x, y) = f |δ3 = f2(x, y) + y2(x− y + 2)
g3(x, y) = g|δ3 = g2(x, y)− y2(y − 3)

• on cell δ4:

{
f4(x, y) = f |δ4 = f1(x, y) + y2(x− y + 2)
g4(x, y) = g|δ4 = g1(x, y)− y2(y − 3)

In order to illustrate the proposed algorithm, we take the algebraic variety
z(f4, g4) in the interior of the triangle δ4 for example.

Set ε = 10−3. Then {f4(x, y), g4(x, y)} can be transformed into {f̃4(y), g̃4(x, y)}
by using Gröbner method, where f̃4 = −5+24y2−8y3+24y4+216y6, g̃4 = x−3y2.

Obviously, z({f̃4, g̃4}) in the interior of δ4 can be expressed as common zeros
of polynomials in Bernstein form: z(h1(τ1), h2((τ1, τ2), h3(τ1, τ2, τ3)), where h1(τ1) =
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Fig. 1. Two piecewise algebraic curves f = 0 and g = 0

−5 + 24τ21 + 8τ31 + 24τ41 + 216τ61 , h2(τ1, τ2) = τ2 − 3τ21 , and h3(τ1, τ2, τ3) =
τ1 + τ2 + τ3 − 1, where (τ1, τ2, τ3) is the barycentric coordinates with respect to
δ4.

Firstly, compute the set S(1) of interval zeros of [h1](τ1) and denote by S(1) =
{[0.3784, 0.3789]}, where [h1](τ1) is an interval evaluation polynomial of h1(τ1).
Secondly, the set S(2) of interval zeros of [h2](τ2) is computed and denote by
S(2) = {[0.4296, 0.4305]}, where [h2](τ2) is an interval evaluation polynomial of
h2(τ1, τ2) on S(1). Lastly, we obtain S(3) = {[0.191, 0.192]}.

Hence, S(1) × S(2) × S(3) is the isolating interval of z(f4, g4) inside δ4. In
other words, the real zero of z(f4, g4)|δ4 is ([0.4296, 0.4305], [−0.3789,−0.3784]).

Similarly, z(f1, g1), z(f2, g2) and z(f3, g3) have no common zeros in the interior
of triangles δ1, δ2 and δ3, respectively.

6. Conclusion

This paper presents an algorithm for isolating the real roots of a given piece-
wise algebraic variety defined on n-dimensional partition, i.e., determining a
sequence of disjoint hyperrectangles such that each of them contains exactly one
real root of the piecewise algebraic variety. It is primarily based on the interval
zeros of univariate interval polynomial in Bernstein form. Numerical example is
provided to demonstrate the propose algorithm is flexible.

It is from the results in [12] that the number of common zeros of multivariate
splines not only depend on the degree of splines, but also heavily depend on the
geometrical structure of the partition. Therefore, it is difficult but important to
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count the real zeros of zero-dimensional piecewise algebraic variety, and deter-
mine whether there exists real root of algebraic variety in the interior of a given
cell. It remains to be our future work.
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