TWO-DIMENSIONAL MUTI-PARAMETERIZED SCHWARZ ALTERNATING METHOD ${ }^{\dagger}$

SANG-BAE KIM

Abstract

The convergence rate of a numerical procedure based on Schwarz Alternating Method(SAM) for solving elliptic boundary value problems depends on the selection of the interface conditions applied on the interior boundaries of the overlapping subdomains. It has been observed that the Robin condition (mixed interface condition), controlled by a parameter, can optimize SAM's convergence rate. In [7], one had formulated the multi-parameterized $S A M$ and determined the optimal values of the multi-parameters to produce the best convergence rate for one-dimensional elliptic boundary value problems. However it was not successful for twodimensional problem. In this paper, we present a new method which utilizes the one-dimensional result to get the optimal convergence rate for the two-dimensional problem.

AMS Mathematics Subject Classification : 65N35, 65N05, 65F10
Key words and phrases : elliptic partial differential equations, Schwarz alternating method, Jacobi iterative methods

1. Introduction

Schwarz-type alternating methods have become some of the most important approaches in domain decomposition techniques for solution of the boundary value problems (BVP's). These methods are based on a decomposition of the BVP domain into overlapping subdomains. The original BVP is reduced to a set of smaller BVP's on a number of subdomains with appropriate interface conditions on the interior boundaries of the overlapping areas, whose solutions are coupled through some iterative scheme to produce an approximation of the solution of the original BVP. It is known [1], [6] that under certain conditions the sequence of the solutions of the subproblems converges to the solution of the original problem.

[^0]One of the objectives of this research is to study a class of Schwarz alternating methods (SAM's) whose interface conditions are parameterized and estimate the values of the parameters involved that speed up the convergence of these methods for a class of BVP's. In the context of elliptic BVP's the most commonly used interface conditions are of Dirichlet type. For this class of numerical SAM, there are several studies about the convergence, which include [9], [11], [14], [15], [12], [2], [10], [16]. The effect of parameterized mixed interface conditions has been considered by a number of researchers [3], [13], [5], [17]. Among them, Tang proposed a generalized Schwarz splitting [17]. The main part of his approach to the solution of a BVP is to use the mixed boundary condition, known as Robin condition,

$$
\begin{equation*}
B(u)=\omega u+(1-\omega) \frac{\partial u}{\partial n} \tag{1}
\end{equation*}
$$

on the artificial boundaries. In [5], a multi-parameter SAM is formulated in which the mixed boundary conditions

$$
\begin{equation*}
B_{i}(u)=\omega_{i} u+\left(1-\omega_{i}\right) \frac{\partial u}{\partial n} \tag{2}
\end{equation*}
$$

are controlled by a distinct parameter ω_{i} for the i-th overlapping area. Fourier analysis is applied to determine the values of ω_{i} parameters that make the convergence factor of SAM be zero.

In [7], one formulated a multi-parameter SAM at the matrix level where the parameters α_{i} are used to impose mixed interface conditions. The relation between the parameters α_{i} and ω_{i} is given by

$$
\begin{equation*}
\alpha_{i}=\frac{1-\omega_{i}}{1-\omega_{i}+\omega_{i} h} \tag{3}
\end{equation*}
$$

(Refer to [7]), where h is the grid size. One determined analytically the optimal values of α_{i} 's for one-dimensional(1-dim) boundary value problems, which minimize the spectral radius of the block Jacobi iteration matrix associated with the SAM matrix.

For the case of two-dimensional(2-dim) boundary value problems, however, the result was not satisfactory. Although reducing a 2 -dim problem into several 1-dim problems by using tensor product of matrices, one could not determine analytically the optimal values of α_{i} 's for the 2-dim problem. One obtained some result for the case of two subdomains $(k=2)$ only. In this paper, however, we use a distinct multi-parameter $\alpha_{j, i}$ for each j-th grid point of the i-th interfaces of the subdomains to get the best convergence for the 2 -dim problem, while we used only one parameter α_{i} for the i-th interfaces of the subdomains in the previous paper [7].

In the following section, we summarize the result of the multi-parameterized SAM on one-dimensional problem, which has been presented in [7]. In section 3, we formulate the multi-parameterized SAM on two-dimensional problem where we impose distinct parameters on each grid point on the interfaces of the

Figure 1. An example of the k-way decomposition of the domain of one dimensional boundary value problem (4).
subdomains. We show that the two-dimensional case can be reduced to the onedimensional ones and obtain the optimal values of the multi-parameters which minimize the spectral radius of the block Jacobi iteration matrix associated with the SAM matrix of two-dimensional problem.

2. Multi-Parameterized Schwarz Splitting for 1-dim problem

We consider the two-point boundary value problem:

$$
\begin{gather*}
-u^{\prime \prime}(t)+q u(t)=f(t), t \in(0,1) \\
u(0)=a_{0}, u(1)=a_{1} \tag{4}
\end{gather*}
$$

with $q \geq 0$ being a constant. We will formulate a numerical instance of SAM based on a k-way decomposition (i.e. the number of subdomains is k) of the problem domain. An example of k-way decomposition is depicted in Figure 1.

Let $T_{j}(x, y, z)$ be a $j \times j$ tridiagonal matrix such that

$$
T_{j}(x, y, z)=\left[\begin{array}{ccccc}
x & -1 & 0 & \cdots & 0 \tag{5}\\
-1 & y & -1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & -1 & y & -1 \\
0 & \cdots & 0 & -1 & z
\end{array}\right]
$$

and let

$$
\begin{equation*}
T_{j}(x) \equiv T_{j}(x, x, x) \tag{6}
\end{equation*}
$$

If we discretize the problem (4) by a second order central divided difference discretization scheme with a uniform grid of mesh size $h=\frac{1}{n+1}$, we obtain a linear system

$$
\begin{equation*}
A x=f \tag{7}
\end{equation*}
$$

where $A=T_{n}(\beta)$ with $\beta=2+q h^{2}$.
If we consider 3 -way $(k=3)$ decomposition, then $A x=f$ has three overlapping diagonal blocks as follows.

$$
\left[\begin{array}{ccccc}
\hline T_{m-l} & -F & 0 & 0 & 0 \tag{8}\\
-E & T_{l} & -F & 0 & 0 \\
\cline { 2 - 5 } & -E & T_{m-2 l} & -F & 0 \\
0 & 0 & -E & T_{l} & -F \\
0 & 0 & 0 & -E & T_{m-l}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4} \\
f_{5}
\end{array}\right]
$$

where $T_{j}=T_{j}(\beta, \beta, \beta)$ in (5) and m and l are the numbers of nodes in each subdomain and the overlapping regions, respectively, such that $l<\frac{m-1}{2}$. In (8), the matrix E have zero elements everywhere except for a 1 at the rightmost top position and the matrix F have zero elements everywhere except for a 1 at the leftmost bottom position. So the matrices E and F have compatible sizes with the following forms.

$$
E=\left[\begin{array}{cccc}
0 & \cdots & 0 & 1 \tag{9}\\
0 & \cdots & 0 & 0 \\
\vdots & & \vdots & \vdots \\
0 & \cdots & 0 & 0
\end{array}\right], F=\left[\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 0 \\
1 & 0 & \cdots & 0
\end{array}\right]
$$

The numerical version of SAM [16] for the problem (4) is equivalent to a block Gauss-Seidel iteration procedure for a new linear system, called Schwarz Enhanced Matrix Equation,

$$
\begin{equation*}
\tilde{A} \tilde{x}=\tilde{f} \tag{10}
\end{equation*}
$$

where

$$
\tilde{A}=\tilde{A}(\beta)=\left[\begin{array}{ccccccc}
\hline T_{m-l} & -F & 0 & 0 & 0 & 0 & 0 \tag{11}\\
-E & T_{l} & 0 & -F & 0 & 0 & 0 \\
\hline-E & 0 & T_{l} & -F & 0 & 0 & 0 \\
0 & 0 & -E & T_{m-2 l} & -F & 0 & 0 \\
0 & 0 & 0 & -E & T_{l} & 0 & -F \\
0 & 0 & 0 & -E & 0 & T_{l} & -F \\
0 & 0 & 0 & 0 & 0 & -E & T_{m-l}
\end{array}\right], \tilde{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2}^{\prime} \\
x_{3} \\
x_{4} \\
x_{4}^{\prime} \\
x_{5}
\end{array}\right], \tilde{f}=\left[\begin{array}{l}
f_{1} \\
f_{2} \\
f_{2} \\
f_{3} \\
f_{4} \\
f_{4} \\
f_{5}
\end{array}\right] .
$$

$\tilde{A}(\beta)$ means that \tilde{A} is a function of β. Note that the solution x of (7) is obtained from the solution \tilde{x} of (10), vice versa. In [17], it is shown that a good choice of the splitting of T_{l} 's can significantly improve the convergence of SAM. Applying for some splittings of T_{l} 's into \tilde{A} in (11), we have a new equation

$$
\begin{equation*}
A^{\prime} \tilde{x}=\tilde{f} \tag{12}
\end{equation*}
$$

with

$$
A^{\prime}=A^{\prime}\left(\beta, \alpha_{1}, \alpha_{2}\right)=\left[\begin{array}{ccccccc}
\left.\begin{array}{cccccc}
T_{m-l} & -F & 0 & 0 & 0 & 0 \\
0 \\
-E & B_{1} & C_{1} & -F & 0 & 0 \\
0 \\
-E & C_{1}^{\prime} & B_{1}^{\prime} & -F & 0 & 0 \\
0 & 0 \\
0 & 0 & -E & T_{m-2 l} & -F & 0 \\
0 & 0 & 0 & -E & B_{2} & C_{2} \\
\hline & -F \\
0 & 0 & 0 & -E & C_{2}^{\prime} & B_{2}^{\prime} \\
\hline 0 & 0 & 0 & 0 & 0 & -E \\
\hline & T_{m-l}
\end{array}\right] \tag{13}
\end{array}\right]
$$

where $B_{i}, C_{i}^{\prime}, i=1,2$ are some matrices such that $\left(B_{i}-C_{i}^{\prime}\right)$ is non-singular and

$$
\begin{equation*}
T_{l}=B_{i}+C_{i}=B_{i}^{\prime}+C_{i}^{\prime}, \quad i=1,2 \tag{14}
\end{equation*}
$$

Note that two linear system (10) and (12) are equivalent in the sense that they have the same solutions. If C_{i}^{\prime} and C_{i} are chosen such that they are the $l \times l$ matrices with all zero entries except for an α_{i} in the positions $(1,1)$ and (l, l),
respectively, as follows,

$$
C_{i}^{\prime}=\left[\begin{array}{cccc}
\alpha_{i} & 0 & \cdots & 0 \tag{15}\\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & & \\
0 & 0 & \cdots & 0
\end{array}\right], \quad C_{i}=\left[\begin{array}{cccc}
0 & \cdots & 0 & 0 \\
\vdots & & \vdots & \vdots \\
0 & \cdots & 0 & 0 \\
0 & \cdots & 0 & \alpha_{i}
\end{array}\right],
$$

the resulting matrix A^{\prime} is given as follows

$$
A^{\prime}=A^{\prime}\left(\beta, \alpha_{1}, \alpha_{2}\right)=\left[\begin{array}{ccc}
T_{m}\left(\beta, \beta, \beta-\alpha_{1}\right) & -F_{1}{ }^{\prime} & 0 \tag{16}\\
-E_{1}{ }^{\prime} & T_{m}\left(\beta-\alpha_{1}, \beta, \beta-\alpha_{2}\right) & -F_{2}{ }^{\prime} \\
0 & & -E_{2}{ }^{\prime}{ }^{\prime} \\
T_{m}\left(\beta-\alpha_{2}, \beta, \beta\right)
\end{array}\right]
$$

where $T_{m}(x, y, z)$'s are $m \times m$ matrices defined in (5) and $E_{i}^{\prime \prime}$'s are the $m \times m$ matrices with zero elements everywhere except that

$$
\begin{aligned}
& (1, m-l) \text {-th entry }=1, \\
& (1, m-l+1) \text {-th entry }=-\alpha_{i}
\end{aligned}
$$

and $F_{i}{ }^{\prime}$'s are the $m \times m$ matrices with zero elements everywhere except that

$$
\begin{aligned}
& (m, l+1) \text {-th entry }=1, \\
& (m, l) \text {-th entry }=-\alpha_{i} .
\end{aligned}
$$

If the number of subdomains k is more than 3 , the matrix A^{\prime} is a block $k \times k$ matrix of the form

$$
A^{\prime}=A^{\prime}(\beta, \mathbf{a})=\left[\begin{array}{cccccc}
G_{1} & -F_{1}{ }^{\prime} & 0 & 0 & \cdots & 0 \tag{17}\\
-E_{1}{ }^{\prime} & G_{2} & -F_{2}^{\prime} & 0 & \cdots & 0 \\
\vdots & & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & -E_{k-2}^{\prime} & G_{k-1} & -F_{k-1}^{\prime} \\
0 & \cdots & 0 & 0 & -E_{k-1}^{\prime} & G_{k}
\end{array}\right]
$$

where $\mathbf{a}=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}\right)$ with $\alpha_{0}=\alpha_{k}=0$ and G_{i} 's are defined as

$$
\begin{equation*}
G_{i}=T_{m}\left(\beta-\alpha_{i-1}, \beta, \beta-\alpha_{i}\right), i=1,2, \cdots, k . \tag{18}
\end{equation*}
$$

We call the matrix A^{\prime} as Multi-Parameterized Enhanced Matrix. If we define

$$
M=M(\beta, \mathbf{a})=\left[\begin{array}{cccc}
G_{1} & 0 & \cdots & 0 \tag{19}\\
0 & G_{2} & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
0 & \cdots & 0 & G_{k}
\end{array}\right] \text { and } N=N(\beta, \mathbf{a})=\left[\begin{array}{cccccc}
0 & F_{1}{ }^{\prime} & 0 & 0 & \cdots & 0 \\
E_{1} & 0 & F_{2}{ }^{\prime} & 0 & \cdots & 0 \\
\vdots & & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & E_{k-2}^{\prime} & 0 & F_{k-1}^{\prime} \\
0 & \cdots & 0 & 0 & E_{k-1}^{\prime} & 0
\end{array}\right]
$$

with $\mathbf{a}=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}\right)$, then we can write the multi-parameterized enhanced matrix A^{\prime} as

$$
\begin{equation*}
A^{\prime}=M-N \tag{20}
\end{equation*}
$$

which is called a Multi-Parameterized Schwarz Splitting (MPSS).

Figure 2. A 3 -way splitting of the unit square Ω.

The convergence behavior of MPSS depends on the spectral radius of the following block Jacobi matrix

$$
J=M^{-1} N=\left[\begin{array}{cccccc}
0 & G_{1}^{-1} \tilde{F}_{1} & 0 & 0 & \cdots & 0 \tag{21}\\
G_{2}^{-1} \tilde{E}_{1} & 0 & G_{2}^{-1} \tilde{F}_{2} & 0 & \cdots & 0 \\
0 & G_{3}^{-1} \tilde{E}_{2} & 0 & G_{3}^{-1} \tilde{F}_{3} & \cdots & 0 \\
\vdots & & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & G_{k-1}^{-1} \tilde{E}_{k-2} & 0 & G_{k}-1 \\
0 & \cdots & 0 & 0 & G_{k}^{-1} \tilde{E}_{k-1} & 0
\end{array}\right]
$$

Note that J is a function of the parameters α_{i} 's, which correspond to the parameters ω_{i} 's in the mixed interface condition (2), respectively. The convergence rate of SAM can be optimized by controlling these parameters α_{i} 's. In [7], one determined the optimal values of the multi-parameter α_{i} 's that make the spectral radius of the block Jacobi matrix J in (21) to be zero. The result of [7] is presented in the following theorem.

Theorem 1. Let $\theta=\cosh ^{-1}\left(\frac{\beta}{2}\right)$ with $\beta=2+q h^{2}$ and let $p \in\{1,2, \cdots, k-1\}$ and let

$$
\Theta(x) \equiv \begin{cases}\sinh (x \theta), & \theta>0 \\ x, & \theta=0\end{cases}
$$

If the values $\alpha_{i}, i=0,1, \cdots, k$, are given by

$$
\begin{array}{ll}
\alpha_{0}=\alpha_{k}=0 \\
\alpha_{i}=\frac{\Theta(m-l)-\alpha_{i-1} \Theta(m-l-1)}{\Theta(m-l+1)-\alpha_{i-1} \Theta(m-l)}, & i=1,2, \cdots, p \\
\alpha_{i}=\frac{\Theta(m-l)-\alpha_{i+1} \Theta(m-l-1)}{\Theta(m-l+1)-\alpha_{i+1} \Theta(m-l)}, & i=p+1, \cdots, k-1,
\end{array}
$$

then the spectral radius of the block Jacobi matrix J in (21) is zero.

3. Multi-Parameterized Schwarz Splitting for 2-dim Problem

Consider the two-dimensional boundary value problem

$$
\begin{gather*}
-\nabla^{2} u(x)+q u(x)=f(x), \quad x \in \Omega \\
u(x)=g(x), \quad x \in \Gamma \tag{22}
\end{gather*}
$$

where Γ is the boundary of $\Omega \equiv(0,1) \times(0,1)$ and $q \geq 0$ is a constant. We formulate a SAM based on a k-way splitting of the domain Ω, i.e., we decompose our domain into k overlapping subdomains Ω_{i} along the x_{1}-axis and make a striptype decomposition of the rectangular domain Ω (for instance, see Figure 2). Next we apply the interface conditions on the two interior boundaries between subdomains Ω_{i} and Ω_{i+1}. Let ℓ be the length of the overlap in x_{1}-direction and η be the length of each subdomain in the same direction. Figure 2 depicts such a 3 -way splitting of the unit square Ω.

To begin our analysis we use a 5 -point finite difference discretization scheme with uniform grid of mesh size $h=\frac{1}{n+1}$ on both x_{1} - and x_{2}-axes and discretize the BVP in (22) to obtain a linear system of the form

$$
\begin{equation*}
B x=f \tag{23}
\end{equation*}
$$

The natural ordering of the nodes is adopted starting from the origin and going in the x_{2}-direction first so that the resulting matrix A can be partitioned into block matrices corresponding to the subdomains, respectively. Using tensor product notation \otimes (See [4], and [8] in which tensor products in connection with BVP's were introduced.), the matrix B in (23) can be written as

$$
\begin{equation*}
B=T_{n}(\beta) \otimes I_{n}+I_{n} \otimes T_{n}(2) \tag{24}
\end{equation*}
$$

where $T_{j}(x)$ is defined in (6) and $\beta=2+q h^{2}$.
Define $l+1=\frac{\ell}{h}$ and $m+1=\frac{\eta}{h}$ such that $n=m k-l(k-1)$ and $l<\frac{m-1}{2}$. The numerical version of SAM for the problem (22) is equivalent to a block GaussSeidel iteration procedure for a new linear system, called the Schwarz Enhanced Matrix Equation ,

$$
\begin{equation*}
\tilde{B} \tilde{x}=\tilde{f} \tag{25}
\end{equation*}
$$

with

$$
\begin{equation*}
\tilde{B}=\tilde{A}(\beta) \otimes I_{n}+I_{k m} \otimes T_{n}(2) \tag{26}
\end{equation*}
$$

where $I_{k m}$ is the $k m \times k m$ identity matrix and $\tilde{A}(\beta)$ is the $k \times k$ block matrix as that defined in (11), which is the case of $k=3$. Note that each diagonal block in $\tilde{A}(\beta)$ is $m \times m$ matrix. .

Let X_{n} be the $n \times n$ orthogonal matrix whose columns are the eigenvectors of the matrix $T_{n}(2)$. Since the eigenvalues of the matrix $T_{n}(2)$ are known to be $\gamma_{i}=2+2 \cos \left(\frac{i \pi}{n+1}\right), i=1,2, \cdots, n$, we can write

$$
\begin{equation*}
X_{n}^{T} T_{n}(2) X_{n}=D_{n} \equiv \operatorname{diag}\left(\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n}\right) \tag{27}
\end{equation*}
$$

Let $X=I_{k m} \otimes X_{n}$, then its inverse is given by $X^{-1}=I_{k m} \otimes X_{n}^{T}$, so we have

$$
\begin{aligned}
X^{-1} \tilde{B} X= & \left(I_{k m} \otimes X_{n}^{T}\right)\left(\tilde{A}(\beta) \otimes I_{n}\right)\left(I_{k m} \otimes X_{n}\right) \\
& +\left(I_{k m} \otimes X_{n}^{T}\right)\left(I_{k m} \otimes T_{n}(2)\right)\left(I_{k m} \otimes X_{n}\right) \\
= & \left(I_{k m} \tilde{A}(\beta) I_{k m}\right) \otimes\left(X_{n}^{T} I_{n} X_{n}\right)+I_{k m} \otimes\left(X_{n}^{T} T_{n}(2) X_{n}\right) \\
= & \tilde{A}(\beta) \otimes I_{n}+I_{k m} \otimes D_{n} .
\end{aligned}
$$

If P is the permutation matrix that maps

$$
\text { row }(i-1) n+j \text { into row }(j-1) k m+i
$$

for $i=1,2, \cdots, k m$ and for $j=1,2, \cdots, n$, then we have

$$
\begin{align*}
\hat{B} \equiv P^{-1} X^{-1} \tilde{B} X P & =P^{-1}\left(\tilde{A}(\beta) \otimes I_{n}\right) P+P^{-1}\left(I_{k m} \otimes D_{n}\right) P \\
& =I_{n} \otimes \tilde{A}(\beta)+D_{n} \otimes I_{k m} \\
& =\operatorname{diag}\left(\tilde{A}\left(\beta+\gamma_{1}\right), \tilde{A}\left(\beta+\gamma_{2}\right), \cdots, \tilde{A}\left(\beta+\gamma_{n}\right)\right) \tag{28}\\
& =\operatorname{diag}\left(\tilde{A}\left(\zeta_{1}\right), \tilde{A}\left(\zeta_{2}\right), \cdots, \tilde{A}\left(\zeta_{n}\right)\right)
\end{align*}
$$

where

$$
\begin{equation*}
\zeta_{j}=\beta+\gamma_{j}, j=1,2, \cdots, n \tag{29}
\end{equation*}
$$

Note that the solution \tilde{x} of linear system (25) is obtained by $\tilde{x}=X P \hat{x}$ if we solve the linear system

$$
\begin{equation*}
\hat{B} \hat{x}=\hat{f} \tag{30}
\end{equation*}
$$

where $\hat{f}=P^{-1} X^{-1} \tilde{f}$ with \tilde{f} in (25).
From (28) and (30), we know that the two-dimensional problem (25) is reduced to n number of one dimensional problems

$$
\tilde{A}\left(\zeta_{j}\right)=\hat{f}_{j}, j=1,2, \cdots, n
$$

where \hat{f}_{j} is the corresponding sub-vector of \hat{f}. Based on (28), the Multi-Parameterized Schwarz Enhanced Matrix for \hat{B} in (28) is defined as

$$
\begin{equation*}
B^{\prime}=\operatorname{diag}\left(A^{\prime}\left(\zeta_{1}, \mathbf{a}\right), A^{\prime}\left(\zeta_{2}, \mathbf{a}\right), \cdots, A^{\prime}\left(\zeta_{n}, \mathbf{a}\right)\right) \tag{31}
\end{equation*}
$$

where $A^{\prime}(x, \mathbf{a})$ is defined in (17). If we let

$$
\begin{align*}
& M=\operatorname{diag}\left(M\left(\zeta_{1}, \mathbf{a}\right), M\left(\zeta_{2}, \mathbf{a}\right), \cdots, M\left(\zeta_{n}, \mathbf{a}\right)\right) \\
& N=\operatorname{diag}\left(N\left(\zeta_{1}, \mathbf{a}\right), N\left(\zeta_{2}, \mathbf{a}\right), \cdots, N\left(\zeta_{n}, \mathbf{a}\right)\right) \tag{32}
\end{align*}
$$

where $M(x, \mathbf{a})$ and $N(x, \mathbf{a})$ are defined in (19), then we can write the multiparameterized enhanced matrix B^{\prime} in (31) as

$$
\begin{equation*}
B^{\prime}=M-N \tag{33}
\end{equation*}
$$

which is called a Multi-Parameterized Schwarz Splitting (MPSS) . The convergence behavior of MPSS depends on the spectral radius of the following block Jacobi matrix

$$
\begin{equation*}
J=M^{-1} N=\operatorname{diag}\left(L_{1}(\mathbf{a}), L_{2}(\mathbf{a}), \cdots, L_{n}(\mathbf{a})\right) \tag{34}
\end{equation*}
$$

where

$$
L_{j}(\mathbf{a})=M\left(\zeta_{j}, \mathbf{a}\right)^{-1} N\left(\zeta_{j}, \mathbf{a}\right), j=1,2, \cdots, n
$$

In [7], one failed to determine a parameter vector a such that the spectral radius of the block Jacobi matrix J in (34) is zero because it is not possible to find such a parameter vector a that makes all of the spectral radii of the diagonal blocks $L_{j}(\mathbf{a})$'s in (34) zero simultaneously.

Now we adopt distinct parameter vector \mathbf{a}_{j} for each diagonal block as follows

$$
\begin{equation*}
J=M^{-1} N=\operatorname{diag}\left(L_{1}\left(\mathbf{a}_{1}\right), L_{2}\left(\mathbf{a}_{2}\right), \cdots, L_{n}\left(\mathbf{a}_{n}\right)\right) \tag{35}
\end{equation*}
$$

where

$$
\mathbf{a}_{j}=\left(\alpha_{j, 0}, \alpha_{j, 1}, \alpha_{j, 2}, \cdots, \alpha_{j, k}\right), j=1,2, \cdots, n
$$

Note these double indices (j, i) in multi-parameter $\alpha_{j, i}$ are related to the idea that one adopts variable parameter $\omega_{i}(x, y)$ instead of constant parameter ω_{i} in (2) along the i-th interface, i.e., we have

$$
\begin{equation*}
B_{i}(u)=\omega_{i}(x, y) u+\left(1-\omega_{i}(x, y)\right) \frac{\partial u}{\partial n} \tag{36}
\end{equation*}
$$

as the mixed interface condition on the i-th interface boundary.
Now, using these double-index multi-parameter $\alpha_{j, i}$'s, we have the following theorem for two-dimensional multi-parameterized Schwarz splitting $B^{\prime}=M-N$ in (33).

Theorem 2. For $j=1,2, \cdots, n$, let $\theta_{j}=\cosh ^{-1}\left(\frac{\zeta_{j}}{2}\right)$ with ζ_{j} in (29) and let $p \in\{1,2, \cdots, k-1\}$ and let

$$
\Theta_{j}(x) \equiv \begin{cases}\sinh \left(x \theta_{j}\right) & , \theta>0 \\ x & , \theta=0\end{cases}
$$

If the values $\alpha_{j, i}, j=1,2, \cdots, n, i=0,1, \cdots, k$ are given by

$$
\begin{array}{ll}
\alpha_{j, 0}=\alpha_{j, k}=0 & \\
\alpha_{j, i}=\frac{\Theta_{j}(m-l)-\alpha_{j, i-1} \Theta_{j}(m-l-1)}{\Theta_{j}(m-l+1)-\alpha_{j, i-1} \Theta_{j}(m-l)}, & i=1,2, \cdots, p \\
\alpha_{j, i}=\frac{\Theta_{j}(m-l)-\alpha_{j, i+1} \Theta_{j}(m-l-1)}{\Theta_{j}(m-l+1)-\alpha_{j, i+1} \Theta_{j}(m-l)}, & i=p+1, \cdots, k-1,
\end{array}
$$

then the spectral radius of the block Jacobi matrix J in (35) is zero.

4. Numerical Experiments

In this section, we present a numerical experiment to prove the result of the previous section. we will compare the results of Multi-Parameterized SAM (MP$S A M$) with those of the Classical SAM. Consider the following model problem

$$
\begin{gather*}
-\nabla^{2} u(x, y)=0, \quad(x, y) \in \Omega=(0,1) \times(0,1) \tag{37}\\
u(x, y)=f(x, y), \quad(x, y) \in \Gamma
\end{gather*}
$$

where Γ is the boundary of Ω, with solution

$$
u(x, y)=\sin (2 \pi x) \cos (2 \pi y)
$$

In all the experiments, the vector with all its components 0.0 was used as initial guess of the solution vector. The relative residual r_{p} is computed as the

Table 1. The classical $S A M$ is applied to the BVP (37).

		relative residual r_{k}		
m	l	$k=3$	$k=4$	$k=8$
10	1	$1.2553 \mathrm{E}-01$	$1.0218 \mathrm{E}-01$	$7.6206 \mathrm{E}-02$
10	4	$9.6040 \mathrm{E}-03$	$1.0148 \mathrm{E}-02$	$2.2181 \mathrm{E}-02$
20	1	$1.6078 \mathrm{E}-01$	$1.3224 \mathrm{E}-01$	$7.9805 \mathrm{E}-02$
20	9	$5.2315 \mathrm{E}-03$	$7.3636 \mathrm{E}-03$	$1.9280 \mathrm{E}-02$

Table 2. The MPSAM is applied to the BVP (37).

		relative residual r_{k}		
m		$k=3$	$k=4$	$k=8$
10		$5.7060 \mathrm{E}-16$	$8.8938 \mathrm{E}-16$	$1.0943 \mathrm{E}-15$
10	4	$5.1131 \mathrm{E}-16$	$5.6130 \mathrm{E}-16$	$1.1373 \mathrm{E}-15$
20	1	$1.0603 \mathrm{E}-15$	$1.3460 \mathrm{E}-15$	$1.7441 \mathrm{E}-15$
20	9	$9.3843 \mathrm{E}-16$	$9.9606 \mathrm{E}-16$	$1.4703 \mathrm{E}-15$

ratio of ℓ_{2}-norms of the residuals of the corresponding system of equations after p iterations, i.e.,

$$
r_{p}=\frac{\left\|B x^{(p)}-f\right\|_{2}}{\left\|B x^{(0)}-f\right\|_{2}} .
$$

Table 1 shows the relative residuals of $S A M$ computed after k iterations for $k=3,4$ and 8 subdomains, $m=10$ and 20 local grids and minimum $(l=1)$ and half ($l=[m-1] / 2$) overlaps. The results indicate slow convergence. Table 2 shows the performance of MPSAM under the same conditions. It shows the optimal convergence. Indeed, the relative residuals by $M P S A M$ are less than 1.7441×10^{-15} after k iterations for the case of k subdomains.

The convergence rate is very sensitive to the computed optimal value of parameter $\alpha_{j, i}$'s and the symmetric choice of them (i.e. Take $p=[k / 2]$ in Theorem (2)) reduces the error propagation when we compute the optimal value of parameters $\alpha_{j, i}$'s.

References

1. R. Courant and D. Hilbert, Methods of mathematical physics, vol 2, Willey, New York, 1962.
2. M. Dryja, An additive Schwarz algorithm for two- and three-dimensional finite element elliptic problems, Domain Decomposition Methods (T. Chan, R. Glowinski, J. Periaux, and O. Widlund, eds.), SIAM, 1989, pp. 168-172.
3. D.J. Evans, L.-S. Kang, Y.-P. Chen, and J.-P. Shao, The convergence rate of the Schwarz alternating procedure (iv) : With pseudo-boundary relaxation factor, Intern. J. Computer Math. 21 (1987), 185-203.
4. P.R. Halmos, Finite-dimensional Vector Spaces, Van Nostrand, Princeton, N.J., 1958.
5. L.-S. Kang, Domain decomposition methods and parallel algorithms, Second International Symposium on Domain Decomposition Methods for Partial Differential Equations (Philadelphia, PA) (Tony F. Chan, Roland Glowinski, Jacques Périaux, and Olof B. Widlund, eds.), SIAM, 1989, pp. 207-218.
6. L. V. Kantorovich and V. I. Krylov, Approximate methods of higher analysis, 4th ed., P. Noordhoff Ltd, Groningen, The Netherlands, 1958.
7. S.-B. Kim, A. Hadjidimos, E.N. Houstis, and J.R. Rice, Multi-parametrized schwarz splittings for elliptic boundary value problems, Math. and Comp. in Simulation 42 (1996), 47-76.
8. R.E. Lynch, J.R. Rice, and D.H. Thomas, Direct solution of partial difference equations by tensor products, Numer. Math. 6 (1964), 185-189.
9. K. Miller, Numerical analogs to the Schwarz alternating procedure, Numer. Math. 7 (1965), 91-103.
10. J. Oliger, W. Skamarock, and W.P. Tang, Schwarz alternating methods and its SOR accelerations, Tech. report, Department of Computer Science, Stanford University, 1986.
11. G. Rodrigue, Inner/outer iterative methods and numerical Schwarz algorithms, J. Parallel Computing 2 (1985), 205-218.
12. G. Rodrigue and P. Saylor, Inner/outer iterative methods and numerical Schwarz algorithms-ii, Proceedings of the IBM Conference on Vector and Parallel Computations for Scientific Computing, IBM, 1985.
13. G. Rodrigue and S. Shah, Pseudo-boundary conditions to accelerate parallel Schwarz methods, Parallel Supercomputing : Methods, Algorithms, and Applications (New York) (G. Carey, ed.), Wiley, 1989, pp. 77-87.
14. G. Rodrigue and J. Simon, A generalization of the numerical Schwarz algorithm, Computing Methods in Applied Sciences and Engineering VI (Amsterdam,New York,Oxford) (R. Glowinski and J. Lions, eds.), North-Holland, 1984, pp. 273-281.
15. G. Rodrigue and J. Simon, Jacobi splitting and the method of overlapping domains for solving elliptic PDE's, Advances in Computer Methods for Partial Differential Equations V (R. Vichnevetsky and R. Stepleman, eds.), IMACS, 1984, pp. 383-386.
16. W.P. Tang, Schwarz Splitting and Template Operators, Ph.D. thesis, Department of Computer Science, Stanford University, 1987.
17. W.P. Tang, Generalized Schwarz splittings, SIAM J. Sci. Stat. Comput. 13 (1992), 573595.

Sang-Bae Kim received a Ph.D from Purdue University, USA, in 1993. He is a professor of Department of Mathematics, Hannam University, Korea. His research interests are numerical linear algebra, scientific computing.
Department of Mathematics, Hannam University, Daejon 306-791, Korea
e-mail: sbk@hnu.kr

[^0]: Received July 30, 2010. Revised October 6, 2010. Accepted October 19, 2010.
 ${ }^{\dagger}$ This work was supported by Hannam University Research Fund 2010.
 © 2011 Korean SIGCAM and KSCAM.

