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ANTI-PERIODIC SOLUTIONS FOR BAM NEURAL

NETWORKS WITH MULTIPLE DELAYS ON TIME SCALES

JIANGYE SHU AND YONGKUN LI∗

Abstract. In this paper, we consider anti-periodic solutions of the follow-
ing BAM neural networks with multiple delays on time scales:




x∆
i (t) = −ai(t)ei(xi(t)) +

m∑
j=1

cji(t)fj(yj(t− τji)) + Ii(t),

y∆j (t) = −bj(t)hj(yj(t)) +
n∑

i=1

dij(t)gi(xi(t− δij)) + Jj(t),

where i = 1, 2, . . . , n,j = 1, 2, . . . ,m. Using some analysis skills and Lya-
punov method, some sufficient conditions on the existence and exponential
stability of the anti-periodic solution to the above system are established.
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1. Introduction

Bi-directional associative memory (BAM) neural network model, proposed by
Kosko [1-3], is a two-layer nonlinear feedback network model. It is often known as
an extension of the unidirectional auto-associator of the Hopfield model, general-
izing the single-layer auto-associative Hebbian correlation to a two-layer pattern-
matched heteroassociative circuit. Since the BAM model presents a flexible non-
linear mapping from input space to output one, it has promising potential for
applications in pattern recognition, artificial intelligence, diagnosing cancer and
solving optimization problems. Recent years, dynamical behaviors, in particu-
lar, the existence and stability of the equilibrium points, periodic and almost
periodic solutions of the continuous time delayed neural networks have been ex-
tensively studied by a large number of scholars (see i.e. [4-7]). Also, there are
some papers to study the dynamics of the discrete time neural networks, such
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as Refs. [8-10]. However, most of the investigations focused on the continuous
or discrete systems, respectively.

It is meaningful to research continuous and discrete systems under the same
framework. Furthermore, dynamic equations on time scales can unify continu-
ous and discrete time models very well. The theory of time scales was initiated
by S.Hilger (1988), it has a tremendous potential for applications in some math-
ematical models of real processes and phenomena studied in physics, population
dynamics, biotechnology, economics and so on. We refer the readers to the
landmark paper of Hilger [11,12], books by Bohner and Peterson [13,14], which
summarize much of time scales calculus.

During the past twenty years, anti-periodic problem of nonlinear differen-
tial equations were considered by many authors, see [15-21] and the references
therein. However, few researches investigated the existence and stability of anti-
periodic solutions of neural networks on time scales. In this paper, we consider
the following BAM neural networks with multiple delays on time scales




x∆
i (t) = −ai(t)ei(xi(t)) +

m∑
j=1

cji(t)fj(yj(t− τji)) + Ii(t), i = 1, 2, . . . , n,

y∆j (t) = −bj(t)hj(yj(t)) +
n∑

i=1

dij(t)gi(xi(t− δij)) + Jj(t), j = 1, 2, . . . ,m,
(1)

where t ∈ T, T is a periodic time scale which has the subspace topology inherited
from the standard topology on R; xi(t), yj(t) are the states of the ith neuron in
neural field FX and jth neuron in neural field FY; ai(t), bj(t) represent the neuron
charging times; cji(t), dij(t) tell the weights of the neuron interconnections;
τji, δij show the axonal signal transmission delays; fj , gi denote the activation
functions of the neurons; Ii(t), Jj(t) are the external inputs on the neurons. To
the best of our knowledge, there are no papers published on the existence of
anti-periodic solutions of (1). Our main aim of this paper is to establish some
sufficient conditions for the existence and exponential stability of anti-periodic
solutions of (1).

For the sake of simplicity, set [a, b]T := {t ∈ T : a ≤ t ≤ b} and assume
that 0 ∈ T, T is unbounded above, i.e. supT = ∞. What’s more, we will use
x = (x1, . . . , xk)

T ∈ Rk to denote a column vector, in which the symbol (·)T
denotes the transpose of a vector. Let |x| be the absolute-value vector given by

|x| = (|x1|, . . . , |xk|), and define ‖ x ‖=
k∑

i=1

|xi|.
Let u(t) = (x1(t), . . . , xn(t), y1(t), . . . , ym(t))T ∈ C(T,Rn+m), u(t) is said to

be ω-anti-periodic on T, if xi(t + ω) = −xi(t), yj(t + ω) = −yj(t) for all t ∈ T,
t + ω ∈ T, i = 1, . . . , n, j = 1, . . . ,m. The initial conditions of (1) are of the
form





xi(s) = ϕi(s), s ∈ [−τ, 0]T, τ = max
1≤i≤n,1≤j≤m

{τji}, i = 1, . . . , n,

yj(s) = ψj(s), s ∈ [−δ, 0]T, δ = max
1≤i≤n,1≤j≤m

{δij}, j = 1, . . . ,m,
(2)
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where ϕi ∈ C([−τ, 0]T,R), ψj ∈ C([−δ, 0]T,R).
For convenience, we introduce some notations

Ii = sup
t∈T

∣∣Ii(t)
∣∣, I = max

1≤i≤n
{Ii}, Jj = sup

t∈T

∣∣Jj(t)
∣∣, J = max

1≤j≤m
{Jj}

cji = sup
t∈T

∣∣cji(t)
∣∣, dij = sup

t∈T

∣∣dij(t)
∣∣, ai = inf

t∈T

∣∣ai(t)
∣∣, bi = inf

t∈T

∣∣bi(t)
∣∣.

Denote R+ = (0,∞), T+ = (0,∞)T. Throughout this paper, for i = 1, . . . , n,
j = 1, ..,m, it will be assumed that

(H0) ai, bj ∈ C(T,R+); ai(t + ω)ei(r) = −ai(t)ei(−r), bj(t + ω)hj (r) =
−bi(t)hj (−r); cji(t + ω)fj (r) = −cji(t)fj (−r);
dij(t + ω)gi(r) = −dij (t)gi(−r); Ii(t + ω) = −Ii(t),Jj(t + ω) = −Jj (t);
for all t ∈ T, r ∈ R.

(H1) ei, dj ∈ C(R,R), there exist constants ei > 0,hj > 0 such that ei|r1 −
r2| ≤ sgn(r1 − r2)[ei(r1) − ei(r2)],hj |r1 − r2| ≤ sgn(r1 − r2)[hj(r1) −
hj(r2)], for all r1, r2 ∈ R, and ei(0) = 0, hj(0) = 0.

(H2) There exist nonnegative constants Lf
j , L

g
i such that |fj(r1) − fj(r2) ≤

Lf
j |r1 − r2|, |gi(r1)− gi(ri)| ≤ Lg

i |r1 − r2|, for all r1, r2 ∈ R, and fj(0) =

0, gi(0) = 0.
(H3) There exists a constant η > 0 such that

−aiei +

m∑

j=1

cjiL
f
j < −η < 0, −bjhj +

n∑

i=1

dijL
g
i < −η < 0.

The organization of the rest of this paper is as follow. In Section 2, we
introduce some definitions and lemmas to make preparations for later sections.
In Section 3, we establish our main results for the existence and exponential
stability of anti-periodic solution of system (1).

2. Preliminaries

In this section, we first recall some basic definitions and lemmas on time scales
used in what follows.

Let T be a nonempty closed subset (time scale) of R. Throughout this paper
we assume that the time scale T has uniformly bounded graininess µ(t). The
forward and backward jump operators σ, ρ : T → R and the graininess µ : T →
R+ are defined, respectively, by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t} and µ(t) = σ(t)− t.

A point t ∈ T is called left-dense while if t > inf T and ρ(t) = t, left-scattered
if ρ(t) < t, also, right-dense if t < supT and σ(t) = t, and right-scatter if
σ(t) > t. If T has a left-scattered maximum m, then Tk = T \ {m}, otherwise
Tk = T. If T has a right-scattered minimum m, then Tk = T \ {m} otherwise
Tk = T.
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The notation [a, b]T means that [a, b]T = {t ∈ T : a ≤ t ≤ b}. The interval
[a, b)T, (a, b]T, (a, b)T are defined similarly.

Definition 1. We say that a time scale T is periodic if there exist p > 0 such
that if t ∈ T, then t ± p ∈ T. For T 6= R, the smallest positive p is called the
period of time scale.

Remark 1. Let ω ∈ R, ω > 0, T is a ω-periodic time scale if T is a nonempty
closed subset of R such that t + ω ∈ T whenever t ∈ T. Clearly, we have
µ(t) = µ(t+ ω).

Definition 2. Let T 6= R be a periodic time scale with periodic p. We say that
the function f : T → R is anti-periodic with period ω if there exist a natural
number n such that ω = np, f(t+ω) = −f(t) for all t ∈ T and ω is the smallest
number such that f(t+ω) = −f(t). If T = R, we say that f is anti-periodic with
period ω > 0, if ω is the smallest positive number such that f(t+ω) = −f(t) for
all t ∈ T.

A function f : T → R is right-dense continuous provided it is continuous
at right-dense point and its left side limits exist at left-dense point in T. The
set of rd-continuous functions f : T → R will be denoted by Crd(T,R). If f is
continuous at each right-dense point and each left-dense point, then f is said to
be continuous function on T. We define C(J,R) = {u(t) is continuous on J}.
Definition 3. Assume f : T→ R is a function and let t ∈ Tk , we define f∆(t)
to be the number if it exist with the property that for a given ε > 0, there exist
a neighborhood U of t (i.e.U = (t− δ, t+ δ) ∩ T,for some δ > 0) such that

∣∣∣∣
[
f(σ(t))− f(s)

]− f∆(t)
[
σ(t)− s

]∣∣∣∣ < ε

∣∣∣∣σ(t)− s

∣∣∣∣,

for all s ∈ U . We call f∆(t) the delta (or Hilger) derivative of f at t. Moreover,
we say that f is differentiable on Tk provided f∆(t) exists for all t ∈ Tk .

Lemma 1. [13] Assume f : T→ R is a function and let t ∈ Tk . Then we have
the following:

(i) If f is differentiable at t, then f is continuous at t.
(ii) If f is continuous at t and t is right-scattered, then f is differentiable at

t with

f∆ =
f(σ(t))− f(t)

σ(t)− t
,

(iii) If t is not right scattered, then

f∆ = lim
s→t

f(σ(t))− f(s)

σ(t)− s
= lim

s→t

f(t)− f(s)

t− s
.
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Let f be right-dense continuous. If F∆(t) = f(t), then we define the delta
integral by

∫ b

a

f(s)∆s = F (b)− F (a).

Definition 4. If a ∈ T, supT = ∞, and f is rd-continuous on [a,∞)T, then we
define the improper integral by

∫ b

a

f(s)∆s := lim
b→∞

∫ b

a

f(s)∆s,

provided this limit exists, and we say that the improper integral converges in this
case. If this limit does not exist, then we say that the improper integral diverges.

A function r : T→ R is called regressive if

1 + µ(t)r(t) 6= 0

for all t ∈ Tk .
If r is regressive and right-dense continuous function, then the generalized

exponential function er is defined by

er(t, s) = exp

{∫ t

s

ξµ(τ)(r(τ))∆τ

}
for s, t ∈ T

with the cylinder transformation

ξh(z) =





log
(
1+hz

)
h if h 6= 0,

z if h = 0.

Let p, q : T→ R be two regressive functions, we define

p⊕ q := p+ q + µpq, ªp := − p

1 + µp
, pª q := p⊕ (ªq).

Then the generalized exponential function has the following properties.

Lemma 2. [13] Assume that p, q : T→ R are two regressive functions, then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(ii) ep(σ(t), t) = (1 + µ(t)p(t))ep(t, s);

(iii) ep(t, σ(s)) =
ep(t, s)

1 + µ(t)p(t)
;

(iv)
1

ep(t, s)
= eªp(t, s);

(v) ep(t, s) =
1

ep(t, s)
= eªp(s, t);

(vi) ep(t, s)eq(s, t) = ep⊕q(t, s);

(vii)
ep(t, s)

eq(t, s
= epªq(t, s).
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Definition 5. (Lakshmikantham and Vatsala [22]) For each t ∈ T, let N be a
neighborhood of t. Then, we define the generalized derivative (or Dini deriv-
ative), D+u∆(t) to mean that, given ε > 0, there exists a right neighborhood
N(ε) ⊂ N of t such that

u(σ(t))− u(s)

µ(t, s)
< D+u∆(t) + ε,

for each s ∈ N(ε), s > t, where µ(t, s) = σ(t)− s. In the case t is right-scattered
and u(t) is continuous at t, this reduce to

D+u∆(t) =
u(σ(t))− u(t)

σ(t)− t
.

Definition 6. Let u∗(t) = (x∗
1(t), . . . , x

∗
n(t), y

∗
1(t), . . . , y

∗
m(t))T be the solution

of system (1) with initial value θ∗ = (ϕ∗
1(t), . . . , ϕ

∗
n(t), ψ

∗
1(t), . . . , ψ

∗
m(t))T is

said to be global exponential stable, if for all solution of system (1) u(t) =
(x1(t), . . . , xn(t), y1(t), . . . , ym(t))T with initial value θ = (ϕ1(t), . . . , ϕn(t), ψ1(t),
. . . , ψm(t))T , there exist a positive constant ε and N = N(ε) such that

n∑

i=1

∣∣xi(t)− x∗
i (t)

∣∣+
m∑

j=1

∣∣yj(t)− y∗j (t)
∣∣ ≤ N(ε)eªε(t, α) ‖ θ − θ∗ ‖, t > 0,

where ‖ θ − θ∗ ‖=
n∑

i=1

sup
s∈[−δ,0]

∣∣ϕi(s)− ϕ∗
i (s)

∣∣+
m∑
j=1

sup
s∈[−τ,0]

∣∣ψj(s)− ψ∗
j (s)

∣∣.

Lemma 3. Let (H0) − (H3) hold. Suppose that u(t) = (x1(t), . . . , xn(t), y1(t),
. . . , ym(t))T is a solution of system (1) with the initial condition

{
xi(s) = ϕi(s),

∣∣ϕi(s)
∣∣ < I

η , s ∈ [−τ, 0]T,

yj(s) = ψj(s),
∣∣ψj(s)

∣∣ < J
η , s ∈ [−δ, 0]T.

(3)

Then

∣∣xi(t)
∣∣ < I

η
,

∣∣yj(t)
∣∣ < J

η
, for all t ∈ [0,+∞)T. (4)

where i = 1, . . . , n, j = 1, . . . ,m

Proof. By way of contradiction, assume that (4) does not hold. Then there exist
i ∈ {1, 2, . . . , n} or j ∈ {1, 2, . . . ,m} and the fist t0 > 0, t0 ∈ T such that

∣∣xi(t0)
∣∣ ≥ I

η
,

∣∣xi(ρ(t0))
∣∣ ≤ I

η
,

∣∣xi(t)
∣∣ < I

η
, t ∈ [−τ, t0)T, (5)

or

∣∣yj(t0)
∣∣ ≥ J

η
,

∣∣yj(ρ(t0))
∣∣ ≤ J

η
,

∣∣yj(t)
∣∣ < J

η
, t ∈ [−δ, t0)T, (6)
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If (5) holds, calculating the Dini derivative of
∣∣xi(t0)

∣∣, together with (H0)−(H4),
we obtain

0 ≤ D+(|xi(t0)|∆)

= sgnxi(t0)

{
− ai(t0)ei(t0) +

m∑

j=1

cji(t0)fj(t0 − τji) + Ii(t0)

}

≤ −aiei
I

η
+

m∑

j=1

cjiL
f
j |yj(t0 − τji)|+ Ii

≤ (−aiei +

m∑

j=1

cjiL
f
j )

I

η
+ Ii < −η

I

η
+ Ii < 0,

which is a contradiction. Similarly, we can prove that (6) does not hold. The
proof of Lemma 3 is now completed. ¤

Lemma 4. Suppose that (H0)− (H3) are satisfied. Suppose additionally that

(H4) There exist some constants ε > 0, ξi > 0, ξ
′
j > 0, such that

ξi
[
ε− aiei(1 + µ(t)ε)

]
+

m∑

j=1

ξ
′
jdijL

g
i (1 + εµ(t+ δij))eε(t+ δij , t) < 0,

ξ
′
j

[
ε− bjhj(1 + µ(t)ε)

]
+

n∑

i=1

ξicijL
f
j (1 + εµ(t+ τji))eε(t+ τji, t) < 0,

i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

Then the solution of system (1) is globally exponentially stable.

Proof. Let u∗(t) = (x∗
1(t), . . . , x

∗
n(t), y

∗
1(t), . . . , y

∗
m(t))T be the solution of system

(1) with initial value θ∗ = (ϕ∗
1(t), . . . , ϕ

∗
n(t), ψ

∗
1(t), . . . , ψ

∗
m(t))T , and u(t) =

(x1(t), . . . , xn(t), y1(t), . . . , ym(t))T be the solution of system (1) with initial
value θ = (ϕ1(t), . . . , ϕn(t), ψ1(t), . . . , ψm(t))T . Then we have

(xi(t)− x∗
i (t))

∆ = −ai(t)
[
ei(xi(t))− ei(x

∗
i (t))

]

+

m∑

j=1

cji(t)
[
fj(yj(t− τji))− fj(y

∗
j (t− τji))

]
, t > 0, (7)

and

(yj(t)− y∗j (t))
∆ = −bj(t)

[
hj(yj(t))− hj(y

∗
j (t))

]

+

n∑

i=1

dij(t)
[
gi(xi(t− δij))− gi(x

∗
i (t− δij))

]
, t > 0. (8)
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In view of above, for t > 0, we have

D+
∣∣xi(t)− x∗

i (t)
∣∣∆ ≤ −aiei

∣∣xi(t)− x∗
i (t)

∣∣

+

m∑

j=1

cjiL
f
j

∣∣yj(t− τji)− y∗j (t− τji)
∣∣, (9)

D+
∣∣yj(t)− y∗j (t)

∣∣∆ ≤ −bjhj

∣∣yj(t)− y∗j (t)
∣∣

+

n∑

i=1

dijL
g
i

∣∣xi(t− δij)− x∗
i (t− δij)

∣∣. (10)

For any α ∈ [−max{τ, δ}, 0], we construct the Lyapunov functional

V (t) = V1(t) + V2(t) + V3(t) + V4(t),

V1(t) =

n∑

i=1

ξieε(t, α)
∣∣xi(t)− x∗

i (t)
∣∣,

V2(t) =

n∑

i=1

m∑

j=1

ξicjiL
f
j

∫ t

t−τji

(1 + εµ(s+ τji))eε(s+ τji, α)
∣∣yj(s)− y∗j (s)

∣∣∆s,

V3(t) =

m∑

j=1

ξ
′
jeε(t, α)

∣∣yj(t)− y∗j (t)
∣∣,

V4(t) =

m∑

j=1

n∑

i=1

ξ
′
jdijL

g
i

∫ t

t−δij

(1 + εµ(s+ δij))eε(s+ δij , α)
∣∣xi(s)− x∗

i (s)
∣∣∆s.

Calculating the delta derivative D+V ∆(t) along the system (1), we can get

D+V ∆
1 (t)

∣∣
(1)

=

n∑
i=1

ξi

[
εeε(t, α)

∣∣xi(t)− x∗
i (t)

∣∣+ eε(σ(t), α)D
+|xi(t)− x∗

i (t)|∆
]

≤
n∑

i=1

ξi

{
εeε(t, α)

∣∣xi(t)− x∗
i (t)

∣∣+ eε(σ(t), α)

[
− aiei

∣∣xi(t)− x∗
i (t)

∣∣

+

m∑
j=1

cjiL
f
j

∣∣yj(t− τji)− y∗j (t− τji)
∣∣
]}

=

{ n∑
i=1

ξi

[
ε− aiei(1 + µ(t)ε)

]
eε(t, α)

∣∣xi(t)− x∗
i (t)

∣∣
}

+

{
(1 + µ(t)ε)eε(t, α)

n∑
i=1

m∑
j=1

ξicjiL
f
j

∣∣yj(t− τji)− y∗j (t− τji)
∣∣
}
,
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D+V ∆
2 (t)

∣∣
(1)

≤
n∑

i=1

m∑
j=1

ξicjiL
f
j

(
1 + εµ(t+ τji)

)
eε(t+ τji, α)

∣∣yj(t)− y∗j (t)
∣∣

−
n∑

i=1

m∑
j=1

ξicjiL
f
j

(
1 + εµ(t)

)
eε(t, α)

∣∣yj(t− τji)− y∗j (tτji)
∣∣.

It concludes that

D+
(
V1(t) + V2(t)

)∆∣∣
(1)

≤
{ n∑

i=1

ξi[ε− aiei(1 + µ(t)ε)]eε(t, α)|xi(t)− x∗
i (t)|

}

+

{ n∑
i=1

m∑
j=1

ξicjiL
f
j

(
1 + εµ(t+ τji)

)
eε(t+ τji, α)

∣∣yj(t)− y∗j (t)
∣∣
}
. (11)

Noting that

D+V ∆
3 (t)

∣∣
(1)

≤
{ m∑

j=1

ξ
′
j

[
ε− bjhj(1 + µ(t)ε)

]
eε(t, α)

∣∣yj(t)− y∗j (t)
∣∣
}

+

{
(1 + µ(t)ε)eε(t, α)

m∑
j=1

n∑
i=1

ξ
′
jdijL

g
i

∣∣xi(t− δij)

−x∗
i (t− δij)

∣∣
}
,

D+V ∆
4 (t)

∣∣
(1)

≤
m∑

j=1

n∑
i=1

ξ
′
idijL

g
i (1 + εµ(t+ δij))eε(t+ δij , α)

∣∣xi(t)− x∗
i (t)

∣∣

−
m∑

j=1

n∑
i=1

ξ
′
idijL

g
i (1 + εµ(t))eε(t, α)

∣∣xi(t− δij)− x∗
i (tδij)

∣∣,

which imply

D+
(
V3(t) + V4(t)

)∆∣∣
(1)

≤
{ m∑

j=1

ξ
′
j

[
ε− bjhj(1 + µ(t)ε)

]
eε(t, α)

∣∣yj(t)− y∗j (t)
∣∣
}

+

{ m∑
j=1

n∑
i=1

ξ
′
jdijL

g
i (1 + εµ(t+ δij))eε(t+ δij , α)

∣∣xi(t)− x∗
i (t)

∣∣
}
. (12)
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From (11) and (12) we can get

D+V ∆(t) ≤
n∑

i=1

{
ξi
[
ε− aiei(1 + µ(t)ε)

]

+

m∑
j=1

ξ
′
jdijL

g
i (1 + εµ(t+ δij))eε(t+ δij , t)

}
eε(t, α)

∣∣xi(t)− x∗
i (t

)
|

+

m∑
j=1

{
ξ
′
j [ε− bjhj(1 + µ(t)ε)]

+

n∑
i=1

ξicijL
f
j (1 + εµ(t+ τji))eε(t+ τji, t)

}
eε(t, α)

∣∣yj(t)− y∗j (t)
∣∣.

(13)

By assumption (H4), it follows that D+V ∆(t) < 0, i.e. V (t) < V (0), for t > 0.

On the other hand, we have

V (0) =

n∑
i=1

ξieε(0, α)
∣∣xi(0)− x∗

i (0)
∣∣+

m∑
j=1

ξ
′
jeε(0, α)

∣∣yj(0)− y∗
j (0)

∣∣

+

n∑
i=1

m∑
j=1

ξicjiL
f
j

∫ 0

−τji

(1 + εµ(s+ τji))eε(s+ τji, α)
∣∣yj(s)− y∗

j (s)
∣∣∆s

+

m∑
j=1

n∑
i=1

ξidijL
g
i

∫ 0

−δij

(1 + εµ(s+ δij))eε(s+ δij , α)
∣∣xi(s)− x∗

i (s)
∣∣∆s

≤
n∑

i=1

{
ξieε(0, α) +

m∑
j=1

ξ
′
jdijL

g
i

∫ 0

−δij

(1 + εµ(s+ δij))eε(s+ δij , α)∆s

}

× sup
s∈[−δ,0]

∣∣xi(s)− x∗
i (s)

∣∣

+

m∑
j=1

{
ξ
′
jeε(0, α) +

n∑
i=1

ξicjiL
f
j

∫ 0

−τji

(1 + εµ(s+ τji))eε(s+ τji, α)∆s

}

× sup
s∈[−τ,0]

∣∣yj(s)− y∗
j (s)

∣∣

≤ N(ε)

{ n∑
i=1

sup
s∈[−δ,0]

∣∣xi(s)− x∗
i (s)

∣∣+
m∑

j=1

sup
s∈[−τ,0]

∣∣yj(s)− y∗
j (s)

∣∣
}
,

where N(ε) = max
1≤i≤n,1≤j≤m

{Ni, N
′
j},

Ni = ξieε(0, α) +

m∑
j=1

ξ
′
jdijL

g
i

∫ 0

−δij

(1 + εµ(s+ δij))eε(s+ δij , α)∆s,

N
′
j = ξ

′
jeε(0, α) +

n∑
i=1

ξicjiL
f
j

∫ 0

−τji

(1 + εµ(s+ τji))eε(s+ τji, α)∆s.



Anti-periodic solutions for BAM neural networks with multiple delays on time scales 289

And
n∑

i=1

ξieε(t, α)
∣∣xi(t)− x∗

i (t)
∣∣+

m∑
j=1

ξ
′
jeε(t, α)

∣∣yj(t)− y∗
j (t)

∣∣ ≤ V (t) ≤ V (0),

that is

min
1≤i≤n,1≤j≤m

{ξi, ξ
′
j}eε(t, α)

{ n∑
i=1

∣∣xi(t)− x∗
i (t)

∣∣+
m∑

j=1

∣∣yj(t)− y∗
j (t)

∣∣
}

≤ V (0).

Thus we can finally conclude that
n∑

i=1

∣∣xi(t)− x∗
i (t)

∣∣+
m∑

j=1

∣∣yj(t)− y∗
j (t)

∣∣ ≤ N(ε)eªε(t, α) ‖ θ∗ − θ ‖,

where N(ε) = N(ε)

min
1≤i≤n,1≤j≤m

{ξi,ξ′j}
. Therefore, By Definition 5, the solution u∗(t) of

system (1) is globally exponentially stable. The proof is completed. ¤

3. Main result

In this section, we will state and prove our main result of this paper.

Theorem 1. Assume that (H0) − (H4) hold. Then system (1) has an ω-anti-
periodic solution, which is globally exponentially stable.

Proof. Let u(t) = (x1(t), . . . , x1(t), y1(t), . . . , y1(t))
T is a solution of system (1)

with the initial condition{
xi(s) = ϕi(s),

∣∣ϕi(s)
∣∣ < I

η , s ∈ [−τ, 0]T,

yj(s) = ψj(s),
∣∣ψj(s)

∣∣ < J
η , s ∈ [−δ, 0]T.

(14)

Then by Lemma 3, the solution u(t) is bounded and

∣∣xi(t)
∣∣ < I

η
,

∣∣yj(t)
∣∣ < J

η
, for all t ∈ [0,+∞)T , i = 1, . . . , n, j = 1, . . . ,m. (15)

Then (
(−1)k+1xi(t+ (k + 1)ω)

)∆

= (−1)k+1x∆
i (t+ (k + 1)ω)

= (−1)k+1

{
− ai(t+ (k + 1)ω)ei(xi(t+ (k + 1)ω))

+

m∑
j=1

cji(t+ (k + 1)ω)fj(yj(t+ (k + 1)ω − τji))

+Ii(t+ (k + 1)ω)

}

= −ai(t)ei((−1)k+1xi(t+ (k + 1)ω))

+

m∑
j=1

cji(t)fj((−1)k+1yj(t+ (k + 1)ω − τji)) + Ii(t). (16)
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Similarly,
(
(−1)k+1yj(t+ (k + 1)ω)

)∆

= −bj(t)hj((−1)k+1yj(t+ (k + 1)ω))

+

n∑
i=1

dij(t)gi((−1)k+1xi(t+ (k + 1)ω − δij)) + Jj(t). (17)

Thus, for any natural number k, (−1)k+1u(t+(k+1)ω) are the solution of system (1).
Then by Lemma 3, there exists a constant N(ε) such that

n∑
i=1

∣∣(−1)k+1xi(t+ (k + 1)ω)− (−1)kxi(t+ kω)
∣∣

+

m∑
j=1

∣∣(−1)k+1yj(t+ (k + 1)ω)− (−1)kyj(t+ kω)
∣∣

≤ N(ε)eªε(t+ kω, α)

{ n∑
i=1

sup
s∈[−τ,0]

∣∣xi(s+ ω) + xi(s)
∣∣

+

m∑
j=1

sup
s∈[−δ,0]

∣∣yj(s+ ω) + yj(s)
∣∣
}

≤ 2N(ε)eªε(t+ kω, α)

(
nI

η
+

mJ

η

)
. (18)

Then for a natural number l, we obtain

(−1)l+1xi(t+ (l + 1)ω)

= xi(t) +

l∑
k=0

[
(−1)k+1xi(t+ (k + 1)ω)− (−1)kxi(t+ (k)ω)

]
, (19)

(−1)l+1yj(t+ (l + 1)ω)

= yj(t) +

l∑
k=0

[
(−1)k+1yj(t+ (k + 1)ω)− (−1)kyj(t+ (k)ω)

]
. (20)

Then ∣∣(−1)l+1xi(t+ (l + 1)ω)
∣∣

≤
∣∣xi(t)

∣∣+
l∑

k=0

∣∣(−1)k+1xi(t+ (k + 1)ω)− (−1)kxi(t+ (k)ω)
∣∣, (21)

∣∣(−1)l+1yj(t+ (l + 1)ω)
∣∣

≤
∣∣yj(t)

∣∣+
l∑

k=0

∣∣(−1)k+1yj(t+ (k + 1)ω)− (−1)kyj(t+ (k)ω)
∣∣. (22)

Noting that µ(t) is bounded and (18) holds, then there exist a sufficient large constant
K > 0 and a positive constant β such that∣∣(−1)k+1xi(t+ (k + 1)ω)− (−1)kxi(t+ kω)

∣∣ ≤ β(e−cω)k, for all k > K, (23)
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and ∣∣(−1)k+1yj(t+ (k + 1)ω)− (−1)kyj(t+ kω)
∣∣ ≤ β(e−cω)k, for all k > K. (24)

where i = 1, . . . , n, j = 1, . . . ,m. It follow from (19) − (24) that (−1)ku(t + kω)
uniformly converges to a continuous function v(t) = (x∗

1(t), . . . , x
∗
n(t), y

∗
1(t), . . . ,

y∗
m(t)) in time scales sense.
Now we will prove that v(t) is an ω-anti-periodic of (1). First, we have

v(t+ ω) = lim
k→∞

(−1)ku(t+ kω + ω) = − lim
k→∞

(−1)k+1u(t+ (k + 1)ω) = −v(t).

Next, we show that v(t) is a solution of (1). In fact, together with the continuity
of right hand of (1), (16) and (17) implies that {(−1)k+1u(t + (k + 1)ω)} uniformly
converges to a continuous function in the sense time scales. Letting k → ∞, we obtain

(x∗
i (t))

∆ = −ai(t)ei(x
∗
i (t)) +

m∑
j=1

cji(t)fj(y
∗
j (t− τji)) + Ii(t), i = 1, . . . , n

and

(y∗
j (t))

∆ = −bj(t)hj(y
∗
j (t)) +

n∑
i=1

dij(t)gi(x
∗
i (t− δij)) + Jj(t), j = 1, . . . ,m.

Therefore, v(t) is a solution of (1). Moreover, by Lemma 4 we can show that v(t) is
globally exponentially stable. This completes the proof. ¤
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