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SOLVABILITY OF LUIKOV’S SYSTEM OF HEAT AND MASS

DIFFUSION IN ONE-DIMENSIONAL CASE

LAZHAR BOUGOFFA∗ AND HIND K. AL-JEAID

Abstract. This paper studies a boundary value problem for a linear cou-
pled Luikov’s system of heat and mass diffusion in one-dimensional case.
Using an a priori estimate, we prove the uniqueness of the solution. Also,
some traveling wave solutions and explicit solutions are obtained by using
the transformation ξ = x− ct and separation method respectively.
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1. Introduction

Consider the following linear coupled Luikov’s system of heat and mass dif-
fusion in one-dimensional case [1] and [2]





∂w
∂t − α∂2w

∂x2 − β ∂θ
∂t = 0,

∂θ
∂t − γ ∂2θ

∂x2 − δ ∂2w
∂x2 = 0,

(1)

where w is the temperature, θ is the moisture potential, t the time and α, β, γ
and δ are assumed to be positive constants. Various initial and boundary value
problems associated with this system have been investigated in [2]. In [3] Luikov
and Mikhailov used the Laplace transform technique to obtain their solutions.
These same problems were also treated by Mikhailov and Özisik [2] using the
finite integral transform technique. They obtained the same solutions as those
of Luikov and Mikhailov. Also, Liu and Cheng [4] developed an analytical ap-
proach to obtain complete and satisfactory solutions of these equations subject
to specified initial and boundary conditions and numerical results are compared
with the solutions obtained by Thomas [5] and Keylwerth [6].
One of the main problem of mathematics appears when α(t, x), β(t, x), γ(t, x)
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and δ(t, x) are analytic functions and are added to the system with a heat supply.
The new problem, incorporating the above functions, is

{
∂w
∂t − α(t, x)∂

2w
∂x2 − β(t, x)∂θ∂t = f(t, x),

∂θ
∂t − γ(t, x) ∂

2θ
∂x2 − δ(t, x)∂

2w
∂x2 = g(t, x).

(2)

A question which arises naturally is under what conditions on the functions
α(t, x), β(t, x), γ(t, x) and δ(t, x) does the problem have solutions?
An analytical method to obtain explicit solutions of these equations is still lack-
ing in the literature.
In the bounded domain

Ω = {(t, x) : 0 ≤ t ≤ T, 0 ≤ x ≤ 1} ,
we attach the following initial conditions

{
w(0, x) = w0(x), 0 < x < 1,
θ(0, x) = θ0(x), 0 < x < 1

(3)

and the boundary conditions




∂w
∂x = 0, 0 < t ≤ T

∂θ
∂x = 0, 0 < t ≤ T.

(4)

We assume that the following requirements:




α1 ≤ α(t, x) ≤ α2,
β1 ≤ β(t, x) ≤ β2,
γ1 ≤ γ(t, x) ≤ γ1,
δ1 ≤ δ(t, x) ≤ δ2,

∂α
∂t ≤ −α3 < 0,
∂γ
∂t ≤ −γ3 < 0,

(5)

∀(t, x) ∈ Ω.
Here, we shall prove a result on the uniqueness of the solutions for the given sys-
tem with initial and boundary conditions by using an a priori estimate. Some
traveling wave solutions to systems (2) are obtained. The basic key of this
method is to transform (2) into integrable systems of ODEs by using the trans-
formation ξ = x− ct. Also, explicit solutions are presented in the form of series
by separation method.

2. Preliminaries

We reformulate the given system (2)-(4) as the problem of solving the operator
equation

LU = F,
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where U, LUand F are respectively the pairs:

U = (w, θ),

LU = (L1, L2)

and

F = (F1, F2),

where

L1 = {`1(w, θ), low} ,

L2 = {`2(w, θ), l1θ} ,

`1(w, θ) =
∂w

∂t
− α(t, x)

∂2w

∂x2
− β(t, x)

∂θ

∂t
,

`2(w, θ) =
∂θ

∂t
− γ(t, x)

∂2θ

∂x2
− δ(t, x)

∂2w

∂x2
,

low = w0(x), l1θ = θ0(x)

and

F1 = {f, w0} , F2 = {g, θ0} .
The operator L is considered from a space E = E1×E2 into the space E∗ = E∗

1×
E∗

2 , where E is a Banach space consisting of all functions (w, θ) ∈ L2(Ω)×L2(Ω)
satisfying conditions (3)-(4) and having the finite norm

‖ U ‖2E= sup
0≤τ≤T

[∫ 1

0

[
w2 + θ2 + θ2x + w2

x

]
(τ, x)dx

]

+

∫

Ω

[
w2

t + w2
x + θ2t + θ2x

]
dtdx

+

∫

Ω

[
w2

xx + θ2xx
]
dtdx, (6)

and E∗ = E∗
1×E∗

2 is the completion of the Hilbert space
{
L2(Ω) × H1,2(0, 1) × L2(Ω)

}
×
{
L2(Ω) × H1,2(0, 1)

}
with respect to the norm

‖ F ‖2E∗=‖ f ‖2L2(Ω) + ‖ g ‖2L2(Ω) + ‖ w0 ‖2H1(0, 1) + ‖ θ0 ‖2H1(0, 1) .
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3. A priori estimate

Here we establish an a priori estimate which ensures the uniqueness of the
solution of the boundary value problem of the coupled system (2)-(4). For that,
we need the following.

Lemma 1. Let (w(t, x), θ(t, x)) be a solution of problem (2)-(4, then
∫ 1

0

w2(τ, x)dx ≤ η1

(∫

Ωτ

w2
t (t, x)dtdx+

∫ 1

0

w2
0(x)dx

)
, (7)

∫ 1

0

θ2(τ, x)dx ≤ η2

(∫

Ωτ

θ2t (t, x)dtdx+

∫ 1

0

θ20(x)dx

)
, (8)

∫

Ωτ

(
∂2w

∂x2

)2

dtdx ≤ η3

∫

Ωτ

[
w2

t (t, x) + θ2t (t, x) + f2(t, x)
]
dtdx, (9)

∫

Ωτ

(
∂2θ

∂x2

)2

dtdx ≤ η4

∫

Ωτ

[
θ2t (t, x) + w2

xx(t, x) + g2(t, x)
]
dtdx, (10)

where Ωτ = (0, τ) × (0, 1), ηi > 0, i = 1, ..., 4 and η3 = 3max
(

1
α2 ,

β2

α2

)
and

η4 = 3max
(

1
γ2 ,

δ2

γ2

)
.

Proof. To prove (7), it is easy to observe that∫

Ωτ

(w2)tdt = 2

∫

Ωτ

wtwdt, (11)

it follows after applying the γ1 − inequality : 2 | ab |≤ γ1a
2 + 1

γ1
b2, γ1 > 0 to

the right hand-side of this equality∫ 1

0

w2(τ, x)dx−
∫ 1

0

w2(0, x)dx ≤ 1

γ1

∫

Ωτ

w2(t, x)dtdx+ γ1

∫

Ωτ

w2
t (t, x)dtdx, (12)

and using Gronwall’s inequality to this inequality we obtain (7).
By the same method we prove (8).
Now from the second equation of (2), we see that

α2

[
∂w

∂x

]2
(t, x) = [wt(t, x)− βθt(t, x) + f(t, x)]

2
, (13)

by integration over Ωτ and using the fact that (a+ b+ c)2 ≤ 3(a2 + b2 + c2), we
obtain the desired inequality (9). ¤
By the same method we prove (10). The following theorem shows that the solu-
tion of (2)-(4) is unique.

Theorem 1. For any any solution U = (w(t, x), θ(t, x)) ∈ E of (2)-(4) there
exists a positive constant C independent on U such that

‖ U ‖E≤ C ‖ LU ‖E∗ . (14)
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Proof. Firstly, consider the scalar product (`1(w, θ), wt)L2(Ωτ ) . Employing in-

tegration by parts, and taking into account initial and boundary conditions
(3)-(4), we obtain

2 (`1(w, θ), wt)L2(Ωτ = 2

∫

Ωτ

w2
t dtdx+ 2

∫ 1

0

αxwtwx(τ, x)dx+

∫ 1

0

αw2
x(τ, x)dx

−
∫ 1

0

α(0, x)w0(x)
2dx−

∫

Ωτ

αtw
2
xdtdx− 2 (βθt, wt)L2(Ωτ ) .

(15)

Similarly, for the scalar product (`2(w, θ), θt)L2(Ωτ ) , we obtain

2 (`2(w, θ), θt)L2(Ωτ = 2

∫

Ωτ

θ2t dtdx+ 2

∫ 1

0

γxθtθx(τ, x)dx

+

∫ 1

0

γθ2x(τ, x)dx−
∫ 1

0

γ(0, x)θ′0(x)
2dx−

∫

Ωτ

γtθ
2
xdtdx− 2 (γwxx, θt)L2(Ωτ ) . (16)

Adding side to side (15) and (16) we obtain

2

∫

Ωτ

[
w2

t + θ2t
]
dtdx+

∫ 1

0

[
αw2

x + γθ2x
]
(τ, x)dx−

∫

Ωτ

αtw
2
xdtdx

−
∫

Ωτ

γtθ
2
xdtdx = 2 (`1, wt)L2(Ωτ ) + 2 (`2, θt)L2(Ωτ ) +

∫ 1

0

α(0, x)w′
0(x)

2dx

+

∫ 1

0

γ(0, x)θ′0(x)
2dx+ 2 (βθt, wt)L2(Ωτ ) + 2 (γwxx, θt)L2(Ωτ ) . (17)

Using ε− inequality to estimate the following terms which arise in the right-hand
side and the left-hand side of (17) as follows:

2 (`1(w, θ), wt)L2(Ωτ ) ≤
1

ε1

∫

Ωτ

f2dtdx+ ε1

∫

Ωτ

w2
t dtdx, (18)

2 (`2(w, θ), θt)L2(Ωτ ) ≤
1

ε2

∫

Ωτ

g2dtdx+ ε2

∫

Ωτ

θ2t dtdx, (19)

2 (βθt, wt)L2(Ωτ ) ≤
1

ε3

∫

Ωτ

βθ2t dtdx+ ε3

∫

Ωτ

βw2
t dtdx, (20)

2 (γwxx, θt)L2(Ωτ ) ≤
1

ε4

∫

Ωτ

γw2
xxdtdx+ ε4

∫

Ωτ

γθ2t dtdx. (21)
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where εi > 0, i = 1, ..., 4.
From (17), (18)-(21) and (7)-(10),and using the above conditions (5), we get

2

∫

Ωτ

[
w2

t + θ2t
]
dtdx+ α1

∫ 1

0

w2
x(τ, x)dx+ γ1

∫ 1

0

θ2x(τ, x)dx

+α3

∫

Ωτ

w2
x(τ, x)dx+ γ3

∫

Ωτ

θ2xdtdx+

∫ 1

0

w2(τ, x)dx+

∫ 1

0

θ2(τ, x)dx

+

∫

Ωτ

w2
xxdtdx+

∫

Ωτ

θ2xxdtdx

≤ 1

ε1

∫

Ωτ

f2dtdx+ ε1

∫

Ωτ

w2
t dtdx+

1

ε2

∫

Ωτ

g2dtdx

+ε2

∫

Ωτ

θ2t dtdx+ α2

∫ 1

0

θ′0(x)
2dx+ γ2

∫ 1

0

w′
0(x)

2dx

+
β2

ε3

∫

Ωτ

θ2t dtdx+ β2ε3

∫

Ωτ

w2
t dtdx+

δ2
ε4

∫

Ωτ

w2
xxdtdx

+ε4δ2

∫

Ωτ

θ2t dtdx+ η1

∫

Ωτ

w2
t dtdx

+η1

∫ 1

0

w2
0(x)dx+ η2

∫

Ωτ

θ2t dtdx+ η2

∫ 1

0

θ20(x)dx

+η3

∫

Ωτ

f2dtdx+ η3

∫

Ωτ

θ2t dtdx+ η3

∫

Ωτ

w2
t dtdx

+η4

∫

Ωτ

g2dtdx+ η4

∫

Ωτ

θ2t dtdx+ η4

∫

Ωτ

w2
xxdtdx. (22)

Thus

k1

∫

Ωτ

w2
t dtdx+ k2

∫

Ωτ

θ2t dtdx+ α3

∫

Ωτ

w2
x(τ, x)dx+ γ3

∫

Ωτ

θ2xdtdx

+α1

∫ 1

0

w2
x(τ, x)dx+ γ1

∫ 1

0

θ2x(τ, x)dx

+

∫ 1

0

w2(τ, x)dx+

∫ 1

0

θ2(τ, x)dx+ k3

∫

Ωτ

w2
xxdtdx+

∫

Ωτ

θ2t dtdx

≤ k4

∫

Ωτ

f2dtdx+ k5

∫

Ωτ

g2dtdx+ η1

∫ 1

0

w2
0(x)dx

+γ2

∫ 1

0

w′
0(x)

2dx+ η2

∫ 1

0

θ20(x)dx+ α2

∫ 1

0

θ′0(x)
2dx. (23)

where k1 = 2 − ε1 − β2ε3 − η1 − η3, k2 = 2 − ε2 − β2

ε3
− ε4δ2 − η2 − η3 − η4,

k3 = 1− δ2
ε2

− η4, k4 = 1
ε1

+ η3 and k5 = 1
ε2

+ η4.
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Therefore,
∫ 1

0

[
w

2
+ θ

2
+ θ

2
x + w

2
x

]
(τ, x)dx +

∫

Ωτ

[
w

2
t + w

2
x + θ

2
t + θ

2
x

]
dtdx

+

∫

Ωτ

[
w

2
xx + θ

2
xx

]
dtdx

≤ C

[∫

Ωτ

(f
2
+ g

2
)dtdx +

∫ 1

0

(
w

2
0(x) + w

′
0(x)

2
)
dx +

∫ 1

0

(
θ
2
0(x) + θ

′
0(x)

2
)
dx

]

(24)

where C = min(1, k1, k2, k3, α3, γ3, δ1)
max(1,k4, k5, α2, η1, η2)

.

Now, replacing the right-hand side of (24) by its upper bound with respect τ in
the interval (0, T ), we obtain the desired inequality.
This completes the proof. ¤

Corollary 1. There exists a unique solution U = (w, θ) ∈ E = E1 × E2 to
(2)-(4).

4. Traveling wave solutions

4.1.Solvability of system with constant coefficients. Consider the coupled
nonhomogeneous system





∂w
∂t − α∂2w

∂x2 − β ∂θ
∂t = f(t, x),

∂θ
∂t − γ ∂2θ

∂x2 − δ ∂2w
∂x2 = g(t, x).

(25)

Introduce the similarity variable ξ = x − ct, where the frequency c is required
to be non-zero. Then system (25) can be transformed into the linear system of
ordinary differential equations{ −cw′ − αw′′ + cβθ′ = f(ξ),

−cθ′ − γθ′′ − δw′′ = g(ξ).
(26)

From the first equation of system (26), we get

θ′ =
1

cβ
f(ξ) +

1

β
w′ +

α

cβ
w′′. (27)

It follows that,

θ =
1

cβ

∫
f(ξ)dξ +

1

β
w +

α

cβ
w′ + c1. (28)

Integrating the second equation of system (26), we get

− cθ − γθ′ − δw′ =
∫

g(ξ)dξ + c2 (29)

Substituting (27) and (28) into (29), we get

w′′ + r1w
′ + r2w = F (ξ), (30)
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where

F (ξ) =
−c

αγ

[
β

∫
g(ξ)dξ +

∫
f(ξ)dξ +

γ

c
f(ξ) + β (cc1 + c2)

]

and

r1 =
c

αγ
[α+ γ + βδ] , r2 =

c2

αγ
.

If r21 − 4r2 ≥ 0, then the general solution of (30) is

w = b1e
λ1ξ + b2e

λ2ξ +

[∫ −eλ2ξ

(λ2 − λ1)e(λ1+λ2)ξ
F (ξ)dξ

]
eλ1ξ (31)

+

[∫
eλ1ξ

(λ2 − λ1)e(λ1+λ2)ξ
F (ξ)dξ

]
eλ2ξ,

where λi =
−r1±

√
r21−4r2
2 and bi, i = 1, 2 are arbitrary constants.

Thus, from Eq.(28), we obtain

θ =
1

cβ

∫
f(ξ)dξ +

1

β

(
1 +

αλ1

c

)
eλ1ξ

∫ −eλ2ξ

(λ2 − λ1)e(λ1+λ2)ξ
F (ξ)dξ

+
1

β

(
1 +

αλ2

c

)
eλ2ξ

∫
eλ1ξ

(λ2 − λ1)e(λ1+λ2)ξ
F (ξ)dξ (32)

+
b1
β

(
1 +

αλ1

c

)
eλ1ξ +

b2
β

(
1 +

αλ2

c

)
eλ2ξ + c1.

By back transformation, we get w(t, x) and θ(t, x).

4.2.Solvability of system with variable coefficients. Consider the coupled
system





∂w
∂t − α(t, x)∂

2w
∂x2 − β(t, x)∂θ∂t = 0,

∂θ
∂t − γ(t, x) ∂

2θ
∂x2 − δ(t, x)∂

2w
∂x2 = 0

(33)

and introduce the similarity variable ξ = x − ct, u(t, x) = u(ξ), θ(t, x) =
θ(ξ), β(t, x) = β(ξ), γ(t, x) = γ(ξ) and δ(t, x) = δ(ξ). Then system (33) can be
transformed into the linear system of ordinary differential equations with vari-
able coefficients

{
cw′ + α(ξ)w′′ − cβ(ξ)θ′ = 0,
cθ′ + γ(ξ)θ′′ + δ(ξ)w′′ = 0.

(34)

We shall prove a result and discuss the conditions which govern the separation
of system of two coupled equations (34).
Consider now the following transformation

θ′ = Φ(ξ)w′, (35)
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where Φ(ξ) is unknown function.
The substitution of Eq.(35) into system (34) gives a system which we write as{

α(ξ)w′′ + c(1− β(ξ)Φ(ξ))w′ = 0,
[γ(ξ)Φ(ξ) + δ(ξ)]w′′ + [cΦ(ξ) + γ(ξ)Φ′(ξ)]w′ = 0.

(36)

Now, if we multiply the second equation of system (36) by λ ∈ <∗ and equate the
coefficients of w′ and w′′ on the first equation of system (36) and the resulting
equation, we get

Φ(ξ) =
α(ξ)− λδ(ξ)

λγ(ξ)
(37)

and

λγ(ξ)Φ′(ξ) + c [(λ+ β(ξ)) Φ(ξ)− 1] = 0. (38)

Therefore, the coupled system is also separated and reduced to the following
equation:

α(ξ)w′′ + c [1− β(ξ)Φ(ξ)]w′ = 0, (39)

which has infinite solutions depend on λ.
Substituting w′ = z into Eq.(39) we obtain.

α(ξ)z′ + c (1− β(ξ)Φ(ξ)) z = 0. (40)

The general solution of Eq.(40) is

z = c1 exp

[∫
c(1− β(ξ)Φ(ξ))

α(ξ)
dξ

]
. (41)

Then,

w = c1

∫
exp

[∫
c(1− β(ξ)Φ(ξ))

α(ξ)
dξ

]
dξ + c2. (42)

Thus, in view of (35), we get

θ = c1

∫
Φ(ξ) exp

[∫
c(1− β(ξ)Φ(ξ))

α(ξ)
dξ

]
dξ + c3, (43)

where ci, i = 1, ..., 3 are arbitrary constants.
Thus we have proved the following result which governs the separation of system
(33).

Lemma 2. The system (33) can always be decoupled and solved without increase
of the differential equations by the transformation θ′ = Φ(ξ)w′ if the conditions
(37)-(38) are satisfied.
Furthermore, the general solutions of (33) can be expressed by (42) and (43).

Remark 1. In order to find the particular solutions to systems (25) and (33) we
use the initial and boundary conditions (3)-(4) to find the constants of integration
ci, i = 1, ..., 3.

We will take an example on system (33) as an illustration of this method.
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Example 1. If we choose in system (33) α(t, x) = c [1− ex−ct] , β(t, x) =
e−(x−ct), δ = c and γ(t, x) = −c.
Then, the coupled system (33) can be obtained by the following similarity vari-
able ξ = x− ct.

A straightforward computation, with λ = 1, yields Φ(ξ) =
c(1−eξ)−c

−c = eξ and
we see that the conditions of Lemma 2 are fulfilled. Then, we get the following
solutions

w(ξ) = c1ξ + c2 (44)

and

θ(ξ) = c1e
ξ + c3. (45)

By back transformation, we get

w(t, x) = c1(x− ct) + c2 (46)

and

θ(t, x) = c1e
x−ct + c3. (47)

5. Separation method

We shall find the solutions to system (33) by separation method. For this we
rewrite system (33) as





∂w
∂t − a(t, x)∂

2w
∂x2 − b(t, x) ∂

2θ
∂x2 = 0,

∂θ
∂t − γ(t, x) ∂

2θ
∂x2 − δ(t, x)∂

2w
∂x2 = 0,

(48)

where a(t, x) = α(t, x) + β(t, x)δ(t, x) and b(t, x) = β(t, x)γ(t, x).
We first begin with the following result on the separation of this system in which
the two equations of (48) are decoupled.

Lemma 3. The system (48) can always be decoupled if the functions a(t, x) −
γ(t, x) and b(t, x) are proportional to the function δ(t, x).

Proof. Multiplying second equation of (48) by κ and adding side to side the
resulting equation and the first equation of (48) we get

wt + κθt = (a+ κδ)

(
wxx +

b+ κγ

a+ κδ
θxx

)
. (49)

Now, if we choose κ = b+κγ
a+κδ , then

κ2 +
a− γ

δ
κ− b

δ
= 0. (50)

This condition means that κ is independent on t and x such that

κi =

γ−a
δ ±

√
(a−γ

δ )2 + 4 b
δ

2
, i = 1, 2. (51)
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It may be shown that system (48) is separated into the following equations

∂Zi

∂t
= Φi(t, x)

∂2Zi

∂x2
, i = 1, 2. (52)

where Zi = w + κiθ and Φi(t, x) = a+ κiδ, i = 1, 2. ¤

In the following we use separation method to obtain explicit solutions for each
equations (52).
Consider the functions Zi(t, x) = Xi(t)Yi(x) and Φi(t, x) = χi(t)ψi(x), i = 1, 2.
Therefore, the equations of (52) can be written in the following form

X ′
i(t)Yi(x) = χi(t)ψi(x)Xi(t)Y

′′
i (x), i = 1, 2. (53)

So that

1

χi(t)

X ′
i(t)

Xi(t)
= ψi(x)

Y ′′
i (x)

Yi(x)
= −λ2, i = 1, 2, (54)

where λ2 is an arbitrary constant.
The direct computation yields

Xi, n(t) = exp

(
−λ2

n

∫
χi(t)dt

)
, (55)

where λ2
n, n = 1, 2, ... are the eigenvalues corresponding to the eigenfunctions

Yi, n(x) satisfying

Y ′′
i, n(x) + λ2

n

1

ψi(x)
Yi, n(x) = 0, i = 1, 2 (56)

and

Y ′
i, n(0) = Y ′

i, n(1) = 0, i = 1, 2. (57)

By principle of superposition, the solution can be expressed by the series

Zi(t, x) =

∞∑
n=1

cnYi, n(x) exp

(
−λ2

n

∫
χi(t)dt

)
, i = 1, 2. (58)

Therefore, by using the initial condition Zi(0, x) = w(0, x)+κiθ(0, x) = w0(x)+
κiθ0(x) = gi(x), i = 1, 2 and from (58) we get

cn =

∫ 1

0
gi(x)Yi, n(x)

1
ψi(x)

dx

ri, n

∫ 1

0
Y 2
i, n(x)

1
ψi(x)

dx
, i = 1, 2, (59)

where ri, n = exp
(−λ2

n

∫
χi(t)dt

) |t=0 .
Thus we have proved

Theorem 2. The solution (w, θ) of system (48) can be represented by

w(t, x) =
κ2Z1(t, x)− κ1Z2(t, x)

κ2 − κ1
(60)
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and

θ(t, x) =
Z2(t, x)− Z1(t, x)

κ2 − κ1
, (61)

where Zi(t, x), i = 1, 2 are given by the series

Zi(t, x) =

∞∑
n=1

cnYi, n(x) exp

(
−λ2

n

∫
χi(t)dt

)
, i = 1, 2,

cn =

∫ 1

0
gi(x)Yi, n(x)

1
ψi(x)

dx

ri, n

∫ 1

0
Y 2
i, n(x)

1
ψi(x)

dx
, i = 1, 2

and ri, n = exp
(−λ2

n

∫
χi(t)dt

) |t=0 .
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