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THE USE OF ITERATIVE METHODS FOR SOLVING

NAVEIR-STOKES EQUATION

SHADAN SADIGH BEHZADI∗ AND MOHAMMAD ALI FARIBORZI ARAGHI

Abstract. In this paper, a Naveir-Stokes equation is solved by using the
Adomian’s decomposition method (ADM) , modified Adomian’s decom-
position method (MADM), variational iteration method (VIM), modified
variational iteration method (MVIM), modified homotopy perturbation
method (MHPM) and homotopy analysis method (HAM). The approxi-
mate solution of this equation is calculated in the form of series which
its components are computed by applying a recursive relation. The exis-
tence and uniqueness of the solution and the convergence of the proposed
methods are proved. A numerical example is studied to demonstrate the
accuracy of the presented methods.
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1. Introduction

Naveir-Stokes equation playes an important role in mathematical physics. A
lot of works have been done in order to find the numerical solution of this equa-
tion. For example, finite analytic numerical solution of Naveir-Stokes equations
[22], numerical solution of the Naveir-Stokes equations using variational itera-
tion methods [4], numerical solution of the Naveir-Stokes equations for the flow a
cylinder cascade [9], analytical solution of a time-fractional Naveir-Stokes equa-
tion by Adomian decomposition method [18], using divergence free wavelets for
the numerical solution of the 2-D stationary Naveir-Stokes equations [23], on
the generalized Naveir-Stokes equations [6]. In this work, we develop the ADM,
MADM, VIM, MVIM, MHPM and HAM to solve the Naveir-Stokes equation as
follows:
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∂u

∂t
= − ∂p

ρ∂z
+ ν(

∂2u

∂r2
+

1

r

∂u

∂r
), (1)

where t is the time, p is the pressure, ν is the kinematics viscosity and ρ is
the density.

With the initial condition given by:

u(r, 0) = f(r). (2)

The paper is organized as follows. In section 2, the mentioned iterative meth-
ods are introduced for solving Eq.(1). Also, the existence and uniqueness of the
solution and convergence of the proposed method are proved in section 3. Fi-
nally, the numerical example is presented in section 4 to illustrate the accuracy
of these methods.

To obtain the approximate solution of Eq.(1), by integrating one time from
Eq.(1) with respect to t and using the initial condition we obtain,

u(r, t) = f(r) +

∫ t

0

D(p(z, t))

ρ
dt+

∫ t

0

ν(D2(u(r, t)) +
1

r
D(u(r, t))) dt,

(3)

where,

D(p(z, t)) = ∂p
∂z ,

Di(u(r, t)) = ∂iu(r,t)
∂ri , i = 1, 2.

In Eq.(3), we assume f(r) is bounded for all r in J = [0, T ](T ∈ R).
The terms Di(u(r, t)) = ∂iu(r,t)

∂ri are Lipschitz continuous with | Di(u) −
Di(u∗) |≤ Li | u− u∗ |, | D(p)−D(p∗) |≤ L | p− p∗ | and

α = T (| ν | (L1 + TL2)),

β = 1− T (1− α).

We set,

G(r, t) = f(r) +

∫ t

0

D(p(r, t))

ρ
dt.

2. Iterative methods

2.1.Description of the MADM and ADM. The Adomian decomposition
method is applied to the following general nonlinear equation

Lu+Ru+Nu = g(r, t), (4)

where u(r, t) is the unknown function, L is the highest order derivative operator
which is assumed to be easily invertible, R is a linear differential operator of
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order less than L,Nu represents the nonlinear terms, and g is the source term.
Applying the inverse operator L−1 to both sides of Eq.(4), and using the given
conditions we obtain

u(r, t) = f(r)− L−1(Ru)− L−1(Nu), (5)

where the function f(r) represents the terms arising from integrating the source
term g(r, t). The nonlinear operator Nu = G1(u) is decomposed as

G1(u) =

∞∑
n=0

An, (6)

where An, n ≥ 0 are the Adomian polynomials determined formally as follows :

An =
1

n!
[
dn

dλn
[N(

∞∑

i=0

λiui)]]λ=0. (7)

Adomian polynomials were introduced in [5,8,20] as

A0 = G1(u0),

A1 = u1G
′
1(u0),

A2 = u2G
′
1(u0) +

1

2!
u2
1G

′′
1(u0), (8)

A3 = u3G
′
1(u0) + u1u2G

′′
1(u0) +

1

3!
u3
1G

′′′
1 (u0), ...

2.1.1.Adomian decomposition method. The standard decomposition tech-
nique represents the solution of u(r, t) in (4) as the following series,

u(r, t) =

∞∑

i=0

ui(r, t), (9)

where, the components u0, u1, . . . are usually determined recursively by

u0 = G(r, t)

u1 =

∫ t

0

ν(L0(r, t) +
1

r
A0(r, t)) dt,

...

un+1 =

∫ t

0

ν(Ln(r, t) +
1

r
An(r, t)) dt n ≥ 0. (10)

Substituting (8) into (10) leads to the determination of the components of u.
Having determined the components u0, u1, . . . the solution u in a series form
defined by (9) follows immediately.
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2.1.2.The modified Adomian decomposition method. The modified de-
composition method was introduced by Wazwaz [21]. The modified forms was
established based on the assumption that the function G(r, t) can be divided
into two parts, namely G1(r, t) and G2(r, t). Under this assumption we set

G(r, t) = G1(r, t) +G2(r, t). (11)

Accordingly, a slight variation was proposed only on the components u0 and u1.
The suggestion was that only the part G1 be assigned to the zeroth component
u0, whereas the remaining part G2 be combined with the other terms given in
(10) to define u1. Consequently, the modified recursive relation

u0 = G1(r, t),

u1 = G2(r, t)− L−1(Ru0)− L−1(A0), (12)

...

un+1 = −L−1(Run)− L−1(An), n ≥ 1,

was developed.
To obtain the approximation solution of Eq.(1), according to the MADM, we

can write the iterative formula (12) as follows:

u0(r, t) = G1(r, t),

u1(r, t) = G2(r, t) +
∫ t

0
ν(L0(r, t) +

1
rA0(r, t)) dt

...

un+1(r, t) =
∫ t

0
ν(Ln(r, t) +

1
rAn(r, t))) dt.

(13)

The operator Di(u(r, t)), i = 1, 2 are usually represented by the infinite series
of the Adomian polynomials as follows:

D(u) =

∞∑

i=0

Ai,

D2(u) =

∞∑

i=0

Li,

where Ai, Li(i ≥ 0) are the Adomian polynomials.
Also, we can use the following formula for the Adomian polynomials [7]:

An = D(sn)−
∑n−1

i=0 Ai,

Ln = D2(sn)−
∑n−1

i=0 Li.
(14)

Where the partial sum is sn =
∑n

i=0 ui(r, t).
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2.2.Description of the VIM and MVIM. In the VIM [11-14], we consider
the following nonlinear differential equation:

L(u(r, t)) +N(u(r, t)) = g(r, t), (15)

where L is a linear operator,N is a nonlinear operator and g(r, t) is a known
analytical function. In this case, a correction functional can be constructed as
follows:

un+1(r, t) = un(r, t) +

∫ t

0

λ(r, τ){L(un(r, τ)) +N(un(r, τ))− g(r, τ)}dτ, n ≥ 0,
(16)

where λ is a general Lagrange multiplier which can be identified optimally
via variational theory. Here the function un(r, τ) is a restricted variations which
means δun = 0. Therefore, we first determine the Lagrange multiplier λ that will
be identified optimally via integration by parts. The successive approximation
un(r, t), n ≥ 0 of the solution u(r, t) will be readily obtained upon using the
obtained Lagrange multiplier and by using any selective function u0. The zeroth
approximation u0 may be selected any function that just satisfies at least the
initial and boundary conditions. With λ determined, then several approximation
un(r, t), n ≥ 0 follow immediately. Consequently, the exact solution may be
obtained by using

u(r, t) = lim
n→∞

un(r, t). (17)

The VIM has been shown to solve effectively, easily and accurately a large
class of nonlinear problems with approximations converge rapidly to accurate
solutions.

To obtain the approximation solution of Eq.(1), according to the VIM, we
can write iteration formula (16) as follows:

un+1(r, t) = un(r, t) + L−1
t (λ[un(r, t)−G(r, t)−∫ t

0
ν(D2(un(r, t)) +

1
rD(un(r, t))) dt]),

(18)

where,

L−1
t (.) =

∫ t

0

(.) dτ

To find the optimal λ, we proceed as

δun+1(r, t) = δun(r, t) + δL−1
t (λ[un(r, t)

−G(r, t)− ∫ t

0
ν(D2(un(r, t)) +

1
rD(un(r, t))) dt]).

(19)

From Eq.(19), the stationary conditions can be obtained as follows:

λ
′
= 0 and 1 + λ

′
= 0.

Therefore, the Lagrange multipliers can be identified as λ = −1 and by sub-
stituting in (18), the following iteration formula is obtained.
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u0(r, t) = G(r, t),
un+1(r, t) = un(r, t)− L−1

t (un(r, t)−G(r, t)

− ∫ t

0
ν(D2(un(r, t)) +

1
rD(un(r, t))) dt, n ≥ 0.

(20)

To obtain the approximation solution of Eq.(1), based on the MVIM [1,2,19],
we can write the following iteration formula:

u0(r, t) = G(r, t),

un+1(r, t) = un(r, t)− L−1
t (− ∫ t

0
ν(D2(un(r, t)− un−1(r, t))

+ 1
rD(un(r, t)− un−1(r, t))) dt), n ≥ 0.

(21)

Relations (20) and (21) will enable us to determine the components un(r, t)
recursively for n ≥ 0.

2.3.Description of the HAM. Consider

N [u] = 0,

where N is a nonlinear operator, u(r, t) is unknown function and r is an
independent variable. let u0(r, t) denote an initial guess of the exact solution
u(r, t), h 6= 0 an auxiliary parameter, H(r, t) 6= 0 an auxiliary function, and L
an auxiliary nonlinear operator with the property L[s(r, t)] = 0 when s(r, t) = 0.
Then using q ∈ [0, 1] as an embedding parameter, we construct a homotopy as
follows:

(1− q)L[φ(r, t; q)− u0(r, t)]− qhH(r, t)N [φ(r, t; q)] = Ĥ[φ(r, t; q);u0(r, t), H(r, t), h, q].
(22)

It should be emphasized that we have great freedom to choose the initial guess
u0(r, t), the auxiliary nonlinear operator L, the non-zero auxiliary parameter h,
and the auxiliary function H(r, t).

Enforcing the homotopy (22) to be zero, i.e.,

Ĥ[φ(r, t; q);u0(r, t), H(r, t), h, q] = 0, (23)

we have the so-called zero-order deformation equation

(1− q)L[φ(r, t; q)− u0(r, t)] = qhH(r, t)N [φ(r, t; q)]. (24)

When q = 0, the zero-order deformation Eq.(24) becomes

φ(r; 0) = u0(r, t), (25)

and when q = 1, since h 6= 0 and H(r, t) 6= 0, the zero-order deformation
Eq.(24) is equivalent to
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φ(r, t; 1) = u(r, t). (26)

Thus, according to (25) and (26), as the embedding parameter q increases from
0 to 1, φ(r, t; q) varies continuously from the initial approximation u0(r, t) to the
exact solution u(r, t). Such a kind of continuous variation is called deformation
in homotopy [16,17].

Due to Taylor’s theorem, φ(r, t; q) can be expanded in a power series of q as
follows

φ(r, t; q) = u0(r, t) +

∞∑
m=1

um(r, t)qm, (27)

where

um(r, t) =
1

m!

∂mφ(r, t; q)

∂qm
|q=0 .

Let the initial guess u0(r, t), the auxiliary nonlinear parameter L, the nonzero
auxiliary parameter h and the auxiliary function H(r, t) be properly chosen so
that the power series (27) of φ(r, t; q) converges at q = 1, then, we have under
these assumptions the solution series

u(r, t) = φ(r, t; 1) = u0(r, t) +

∞∑
m=1

um(r, t). (28)

From Eq.(27), we can write Eq.(24) as follows

(1− q)L[φ(r, t, q)− u0(r, t)] = (1− q)L[
∑∞

m=1 um(r, t) qm]
= q h H(r, t)N [φ(r, t, q)] ⇒ L[

∑∞
m=1 um(r, t) qm]− q L[

∑∞
m=1 um(r, t)qm]

= q h H(r, t)N [φ(r, t, q)] (29)

By differentiating (29) m times with respect to q, we obtain

{L[∑∞
m=1 um(r, t) qm]− q L[

∑∞
m=1 um(r, t)qm]}(m)

= {q h H(r, t)N [φ(r, t, q)]}(m) = m! L[um(r, t)− um−1(r, t)]

= h H(r, t) m ∂m−1N [φ(r,t;q)]
∂qm−1 |q=0 .

Therefore,

L[um(r, t)− χmum−1(r, t)] = hH(r, t)<m(um−1(r, t)),
um(0) = 0,

(30)

where,

<m(um−1(r, t)) =
1

(m− 1)!

∂m−1N [φ(r, t; q)]

∂qm−1
|q=0, (31)
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and

χm =

{
0, m ≤ 1
1, m > 1

Note that the high-order deformation Eq.(30) is governing the nonlinear op-
erator L, and the term <m(um−1(r, t)) can be expressed simply by (31) for any
nonlinear operator N .

To obtain the approximation solution of Eq.(1), according to HAM, let

N [u(r, t)] = u(r, t)−G(r, t)− ∫ t

0
ν(D2(u(r, t)) + 1

rD(u(r, t))) dt,

so

<m(um−1(r, t)) = um−1(r, t)−
∫ t

0
ν(D2(um−1(r, t)) +

1
rD(um−1(r, t))) dt,

(32)

Substituting (32) into (30)

L[um(r, t)− χmum−1(r, t)] = hH(r, t)[um−1(r, t)−
∫ t

0
ν(D2(um−1(r, t))

+ 1
rD(um−1(r, t))) dt− (1− χm)G(r, t)].

(33)

We take an initial guess u0(r, t) = G(r, t), an auxiliary nonlinear operator
Lu = u, a nonzero auxiliary parameter h = −1, and auxiliary function H(r, t) =
1. This is substituted into (33) to give the recurrence relation

u0(r, t) = G(r, t),

un(r, t) =
∫ t

0
ν(D2(un(r, t)) +

1
rD(un(r, t))) dt, n ≥ 1.

(34)

Therefore, the solution u(r, t) becomes

u(r, t) =
∑∞

n=0
un(r, t) = G(r, t) +

∑∞
n=1

( ∫ t

0
ν(D2(un(r, t)) +

1
r
D(un(r, t)))dt

)
.
(35)

Which is the method of successive approximations. If

| un(r, t) |< 1,

then the series solution (35) convergence uniformly.

2.4.Description of the MHPM. To explain MHPM, we consider Eq. (1) as

L(u) = u(r, t)−G(r, t)−
∫ t

0

ν(D2(u(r, t)) +
1

r
D(u(r, t))) dt.

We can define homotopy H(u(r, t), p,m) by

H(u(r, t), o,m) = f(u(r, t)), H(u(r, t), 1,m) = L(u(r, t)).

Where m is an unknown real number and

f(u(r, t)) = u(r, t)−G(r, t).
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Typically we may choose a convex homotopy by

H(u(r, t), p,m) = (1− p)f(u(r, t)) + pL(u(r, t))
+p(1− p)[m(F (u(r, t)))] = 0, 0 ≤ p ≤ 1.

(36)

where m is called the accelerating parameters, and for m = 0 we define
H(u(r, t), p, 0) = H(u(r, t), p), which is the standard HPM.
The convex homotopy (36) continuously trace an implicity defined curve from

a starting pointH(u(r, t)−f(u(r, t)), 0,m) to a solution functionH(u(r, t), 1,m).
The embedding parameter p monotonically increase from o to 1 as trivial prob-
lem f(u(r, t)) = 0 is continuously deformed to original problem L(u(r, t)) = 0.
[3,15,10]

The MHPM uses the homotopy parameter p as an expanding parameter to
obtain

v =

∞∑
n=0

pnun(r, t), (37)

when p −→ 1 , Eq. (37) becomes the approximate solution of Eq. (1), i.e.,

u = limp→1 v =
∑∞

n=0 un(r, t), (38)

where,

un(r, t) = G(r, t) +

∫ t

0

ν(D2(un(r, t)) +
1

r
D(un(r, t))) dt. (39)

3. Existence and convergency of iterative methods

Theorem 1. Let 0 < α < 1, then nonlinear Naveir-Stokes equation (1), has a
unique solution.

Proof. Let u and u∗ be two different solutions of (3) then

| u− u∗ |=| ∫ t

0
ν(D2(un(r, t)) +

1
rD(un(r, t))) dt |

≤ ∫ t

0
| ν || D2(u(t))−D2(u∗(t)) | dt+

∫ t

0
| ν

r || D(u(r, t))−D(u∗(r, t)) | dt
≤ T (| ν | (L1 + TL2)) | u− u∗ |= α | u− u∗ |
From which we get (1−α) | u−u∗ |≤ 0. Since 0 < α < 1. then | u−u∗ |= 0.

Implies u = u∗ and completes the proof. 2

Theorem 2. The series solution u(r, t) =
∑∞

i=0 ui(r, t) of problem(1) using
MADM convergence when 0 < α < 1, | u1(r, t) |< ∞.

Proof. Denote as (C[J ], ‖ . ‖) the Banach space of all continuous functions
on J with the norm ‖ f(t) ‖= max | f(t) |, for all t in J . Define the sequence
of partial sums sn, let sn and sm be arbitrary partial sums with n ≥ m. We are
going to prove that sn is a Cauchy sequence in this Banach space:
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‖ sn − sm ‖= max∀t∈J | sn − sm |= max∀t∈J | ∑n
i=m+1 ui(r, t) |

= max∀t∈J | ∑n
i=m+1(

∫ t

0
νLi dt+

∫ t

0
ν
r Ai dt) |

= max∀t∈J | ∫ t

0
ν(
∑n−1

i=m Li) dt+
∫ t

0
ν
r (
∑n−1

i=m Ai) dt | .
From [7], we have

∑n−1
i=m Ai = D(sn−1 − sm−1),∑n−1
i=m Li = D2(sn−1 − sm−1)

So,

‖ sn − sm ‖= max∀t∈J | ∫ t

0
ν[D2(sn−1 − sm−1)] dt+

∫ t

0
ν
r [D(sn−1 − sm−1)] dt |≤∫ t

0
| ν || D2(sn−1 − sm−1) | dt+

∫ t

0
| ν

r || D(sn−1 − sm−1) | dt ≤ α ‖ sn − sm ‖ .

Let n = m+ 1, then

‖ sn − sm ‖≤ α ‖ sm − sm−1 ‖≤ α2 ‖ sm−1 − sm−2 ‖≤ ... ≤ αm ‖ s1 − s0 ‖ .

From the triangle inquality we have

‖ sn − sm ‖≤‖ sm+1 − sm ‖ + ‖ sm+2 − sm+1 ‖ +...+ ‖ sn − sn−1 ‖
≤ [αm + αm+1 + ...+ αn−m−1] ‖ s1 − s0 ‖
≤ αm[1 + α+ α2 + ...+ αn−m−1] ‖ s1 − s0 ‖≤ [ 1−αn−m

1−α ] ‖ u1(r, t) ‖ .

Since 0 < α < 1, we have (1− αn−m) < 1, then

‖ sn − sm ‖≤ αm

1− α
max∀t∈J | u1(r, t) | .

But | u1(r, t) |< ∞ , so, as m → ∞, then ‖ sn − sm ‖→ 0. We conclude
that sn is a Cauchy sequence in C[J ], therefore the series is convergence and the
proof is complete. 2

Theorem 3. The solution un(r, t) obtained from the relation (21) using VIM
converges to the exact solution of the problem (1) when 0 < α < 1 and 0 < β < 1.

Proof.

un+1(r, t) = un(r, t)− L−1
t (([un(r, t)−G(r, t)− ∫ t

0
ν(D2(un(r, t))

+ 1
rD(un(r, t))) dt]) (40)

u(r, t) = u(r, t)− L−1
t ([u(r, t)−G(r, t)− ∫ t

0
ν(D2(u(r, t))

+ 1
rD(u(r, t))) dt])

(41)

By subtracting relation (45) from (46),

un+1(r, t)− u(r, t) = un(r, t)− u(r, t)− L−1
t (un(r, t)− u(r, t)

− ∫ t

0
(ν[D2(un(r, t))−D2(u(r, t))] + ν

r [D(un(r, t))−D(u(r, t))] dt),
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if we set, en+1(r, t) = un+1(r, t) − un(r, t), en(r, t) = un(r, t) − u(r, t),|
en(r, t

∗) |= maxt | en(r, t) | then since en is a decreasing function with respect
to t from the mean value theorem we can write,

en+1(r, t) = en(r, t) + L−1
t (−en(r, t) +

∫ t

0
(ν[D2(un(r, t))−D2(u(r, t))]

+ν
r [D(un(r, t))−D(u(r, t))]) dt)

≤ en(r, t) + L−1
t [−en(r, t) + L−1

t | en(r, t) | (ν(L1 + TL2))]
≤ en(r, t)− Ten(r, η) + ν(L1 + TL2)L

−1
t L−1

t | en(r, t) |
≤ (1− T (1− α) | en(r, t∗) |,

where 0 ≤ η ≤ t. Hence, en+1(r, t) ≤ β | en(r, t∗) | .
Therefore,

‖en+1‖ = max∀t∈J | en+1 |≤ β max∀t∈J | en |≤ β‖en‖.
Since 0 < β < 1, then ‖en‖ → 0. So, the series converges and the proof is
complete. 2

Theorem 4. If the series solution (34) of problem (1) using HAM convergent
then it converges to the exact solution of the problem (1).

Proof. We assume:

u(r, t) =
∑∞

m=0 um(r, t),

D̂(u(r, t)) =
∑∞

m=0 D(um(r, t)),

D̂2(u(r, t)) =
∑∞

m=0 D
2(um(r, t)).

where,
lim

m→∞
um(r, t) = 0.

We can write,

n∑
m=1

[um(r, t)− χmum−1(r, t)] = u1 + (u2 − u1) + ...+ (un − un−1) = un(r, t).
(42)

Hence, from (42),

lim
n→∞

un(r, t) = 0. (43)

So, using (43) and the definition of the nonlinear operator L, we have
∞∑

m=1

L[um(r, t)− χmum−1(r, t)] = L[

∞∑
m=1

[um(r, t)− χmum−1(r, t)]] = 0.

therefore from (30), we can obtain that,
∞∑

m=1

L[um(r, t)− χmum−1(r, t)] = hH(r, t)

∞∑
m=1

<m−1(um−1(r, t)) = 0.
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Since h 6= 0 and H(r, t) 6= 0 , we have

∞∑
m=1

<m−1(um−1(r, t)) = 0. (44)

By substituting <m−1(um−1(r, t)) into the relation (44) and simplifying it ,
we have∑∞

m=1 <m−1(um−1(r, t)) =
∑∞

m=1[um−1(r, t)

− ∫ t

0
ν(D2(um−1(r, t)) +

1
rD(um−1(r, t)))dt− (1− χm)G(r, t)] =

u(r, t)−G(r, t)− ∫ t

0
ν(D̂2(u(r, t)) + 1

r D̂(u(r, t)))dt. (45)

From (44) and (45), we have

u(r, t) = G(r, t) +
∫ t

0
ν(D̂2(u(r, t)) + 1

r D̂(u(r, t)))dt

therefore, u(r, t) must be the exact solution of Eq.(1). 2

Theorem 5. If | um(r, t) |≤ 1 , then the series solution (39) of problem (1)
converges to the exact solution by using MHPM.

Proof. We can write the solution u(r, t) as follows:

u(r, t) =
∑∞

m=0
um(r, t) =

∑∞
m=0

(G(r, t) +
∫ t

0
ν(D2(um−1(r, t)) +

1
r
D(um−1(r, t)))dt.

(46)

If

‖ D2(um(r, t)) ‖< 1,

‖ D(um(r, t)) ‖< 1.

Then the series solution (39) convergence uniformly.
therefore, u(r, t) =

∑∞
m=0 um(r, t) must be the exact solution of Eq.(1). 2

4. Numerical example

In this section, we compute a numerical example which is solved by the ADM,
MADM, VIM, MVIM, MHPM and HAM. The program has been provided with
Mathematica 6 according to the following algorithm. In this algorithm ε is a
given positive value.

Algorithm 1:
Step 1. Set n ← 0.
Step 2. Calculate the recursive relation (10) for ADM, (13) for MADM, (34)

for HAM and (39) for MHPM.
Step 3. If | un+1 − un |< ε then go to step 4,
else n ← n+ 1 and go to step 2.
Step 4. Print u(r, t) =

∑n
i=0 ui(r, t) as the approximate of the exact solution.
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Algorithm 2:
Step 1. Set n ← 0.
Step 2. Calculate the recursive relation (20) for VIM and (21) for MVIM.
Step 3. If | un+1 − un |< ε then go to step 4,
else n ← n+ 1 and go to step 2.
Step 4. Print un(r, t) as the approximate of the exact solution.

Example 1. Consider the Naveir-Stokes equation as follows:

∂u

∂t
=

1

4
(
∂2u

∂r2
+

1

r

∂u

∂r
),

subject to the initial condition:

u(r, 0) = r2.

With the exact solution is u(r, t) = r2 + t, α = 0.3, β = 0.9, ε = 10−2.

Table 1. Numerical results for Example 1 (r = 0.02)

t Errors

ADM(n=8) MADM(n=5)VIM(n=4) MVIM(n=3) MHPM(n=3)HAM(n=4)

0.02 0.0725267 0.0654478 0.0624865 0.0348465 0.0432261 0.0538867
0.05 0.0741196 0.0654478 0.0642581 0.0437432 0.0488459 0.0563215
0.07 0.0745569 0.0676829 0.0643427 0.0424038 0.0487765 0.0568456
0.1 0.0762653 0.0701516 0.0682345 0.0556712 0.05912643 0.0601744

Table 1 shows that, approximate solution of the nonlinear Naveir-Stokes equa-
tion is convergence with 3 iterations by using the MVIM. By comparing the
results of table 1 , we can observe that the MVIM is more rapid convergence
than the ADM, MADM, VIM, MHPM and HAM.

5. Conclusion

The MVIM has been shown to solve effectively, easily and accurately a large
class of nonlinear problems with the approximations which convergent are rapidly
to exact solutions. In this work, the MVIM has been successfully employed to
obtain the approximate analytical solution of the Naveir-Stokes equation. For
this purpose, we showed that the MVIM is more rapid convergence than the
ADM, MADM, VIM,MHPM and HAM.
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