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Abstract. This paper is concerned with the existence of monotone posi-
tive solutions for a class of nonlinear third-order three-point boundary value
problem. By applying iterative techniques, we not only obtain the existence
of monotone positive solutions, but also establish iterative schemes for ap-
proximating the solutions. An example is also included to illustrate the
importance of the results obtained.
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1. Introduction

Third-order differential equations arise in a variety of different areas of applied
mathematics and physics, e.g., in the deflection of a curved beam having a
constant or varying cross section, a three-layer beam, electromagnetic waves or
gravity driven flows and so on [6].

Third-order three-point boundary value problems (BVPs for short) have been
studied extensively. For example, in 2008, Guo, Sun and Zhao [7] considered the
third-order three-point BVP{

u′′′(t) + a (t) f (u (t)) = 0, t ∈ (0, 1) ,
u (0) = u′ (0) = 0, u′ (1) = αu′ (η) , (1)

where 0 < η < 1 and 1 < α < 1
η . The existence of at least one positive so-

lution for the BVP (1) was proved when f was superlinear or sublinear. The
main tool used was the well-known Guo-Krasnoselskii fixed point theorem. For
other related results, one can refer to [2], [4]-[5], [8], [12]-[14], [16] and the refer-
ences therein. However, almost all of the papers we mentioned focused attention
on the existence of positive solutions and there are few papers concerned with
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the computation of positive solutions. Recently, iterative methods have been
successfully employed to prove the existence of positive solutions of nonlinear
boundary value problems for ordinary differential equations, see [1], [9]-[11], [15].

In this paper, we consider the following nonlinear third-order three-point BVP{
u′′′(t) + f(t, u(t), u′(t)) = 0, t ∈ (0, 1),
u(0) = u′(0) = 0, u′(1) = αu′(η), (2)

where 0 < η < 1 and 1 < α < 1
η . By applying iterative methods, we not only

obtain the existence of monotone positive solutions, but also establish iterative
schemes for approximating the solutions. Here, monotone positive solutions
mean nondecreasing, nonnegative and nontrivial solutions. Our main tool is the
following theorem.

Theorem 1. [3] Let K be a normal cone of a Banach space E and v0 ≤ w0.
Suppose that

(a1) T : [v0, w0] → E is completely continuous;
(a2) T is monotone increasing on [v0, w0] ;
(a3) v0 is a lower solution of T , that is, v0 ≤ Tv0;
(a4) w0 is an upper solution of T , that is, Tw0 ≤ w0.

Then the iterative sequences

vn = Tvn−1 and wn = Twn−1 ( n = 1, 2, 3 · · · )
satisfy

v0 ≤ v1 ≤ · · · ≤ vn ≤ · · · ≤ wn ≤ · · · ≤ w1 ≤ w0

and converge to, respectively, v and w ∈ [v0, w0], which are fixed points of T .

2. Preliminary

In this section, we present several important lemmas.

Lemma 1. [7] Let αη 6= 1. Then for any h ∈ C[0, 1], the BVP
{

u′′′(t) + h(t) = 0, t ∈ (0, 1),
u(0) = u′(0) = 0, u′(1) = αu′(η)

has a unique solution

u(t) =

∫ 1

0

G(t, s)h(s)ds,

where

G(t, s) =
1

2(1− αη)





(2ts− s2) (1− αη) + t2s (α− 1) , s ≤ min {η, t} ,
t2 (1− αη) + t2s (α− 1) , t ≤ s ≤ η,
(2ts− s2) (1− αη) + t2 (αη − s) , η ≤ s ≤ t,
t2 (1− s) , max {η, t} ≤ s

is called the Green’s function.
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For convenience, we define

g(s) =
1 + α

1− αη
s(1− s), s ∈ [0, 1].

Lemma 2. [7] Let 0 < η < 1 and 1 < α < 1
η . Then

0 ≤ G(t, s) ≤ tg(s) and 0 ≤ Gt(t, s) ≤ g(s) for (t, s) ∈ [0, 1]× [0, 1].

Lemma 3. [7] Let 0 < η < 1 and 1 < α < 1
η . Then

G(t, s) ≥ γg(s) for (t, s) ∈
[ η
α
, η
]
× [0, 1],

where 0 < γ = η2

2α2(1+α) min{α− 1, 1} < 1.

3. Main results

In the remainder of this paper, we always assume that 0 < η < 1 and 1 <
α < 1

η . If we denote Λ = 1∫ 1

0
g(s)ds

, then Λ > 0.

Theorem 2. Assume that f : [0, 1]×[0,+∞)×[0,+∞) → [0,+∞) is continuous,
f(t, 0, 0) is not identically zero on [0, 1] and there exists a constant R > 0 such
that

f(t, u1, v1) ≤ f(t, u2, v2) ≤ ΛR, 0 ≤ t ≤ 1, 0 ≤ u1 ≤ u2 ≤ R, 0 ≤ v1 ≤ v2 ≤ R, (3)

then the BVP (2) has monotone positive solutions.

Proof. Let E = C1 [0, 1] be equipped with the norm

‖u‖ = max

{
max
t∈[0,1]

|u (t)| , max
t∈[0,1]

|u′ (t)|
}

and
K = {u ∈ E : u (t) ≥ 0 and u′ (t) ≥ 0 for t ∈ [0, 1]} .

Then K is a normal cone in Banach space E. Note that this induces an order
relation ≤ in E by defining u ≤ v if and only if v − u ∈ K. If we define an
operator T : K → E by

(Tu)(t) =

∫ 1

0

G(t, s)f(s, u(s), u′(s))ds, t ∈ [0, 1] ,

then

(Tu)′(t) =
∫ 1

0

Gt(t, s)f(s, u(s), u
′(s))ds, t ∈ [0, 1] ,

which together with Lemma 2 implies that T : K → K. Obviously, fixed points
of T are monotone solutions of the BVP (2).

Let v0(t) = 0 and w0(t) = Rt, t ∈ [0, 1]. We divide our proof into the following
steps:
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Step 1. We verify that T : [v0, w0] → K is completely continuous.
First, we prove that T is a compact operator. Let D be a bounded set in

[v0, w0]. We will prove that T (D) is relatively compact in K.
For any {wk}∞k=1 ⊂ T (D), there exist {uk}∞k=1 ⊂ D such that wk = Tuk.

Obviously, 0 ≤ uk(t) ≤ R and 0 ≤ u′
k(t) ≤ R for t ∈ [0, 1]. It follows from

Lemma 2 and (3) that

|wk(t)| = |(Tuk)(t)|

=

∫ 1

0

G(t, s)f(s, uk(s), u
′
k(s))ds

≤ ΛR

∫ 1

0

tg(s)ds

≤ R, t ∈ [0, 1] ,

which indicates that {wk}∞k=1 is uniformly bounded. Similarly, we have

|w′
k(t)| = |(Tuk)

′(t)|

=

∫ 1

0

Gt(t, s)f(s, uk(s), u
′
k(s))ds

≤ ΛR

∫ 1

0

g(s)ds

= R, t ∈ [0, 1] .

This shows that {w′
k}∞k=1 is uniformly bounded, which implies that {wk}∞k=1 is

equicontinuous. By Arzela-Ascoli theorem, we know that {wk}∞k=1 has a con-
vergent subsequence in C[0, 1]. Without loss of generality, we may assume that
{wk}∞k=1 converges in C[0, 1].

On the other hand, for any ε > 0, by the uniform continuity of Gt (t, s) , we
know that there exists a δ > 0 such that for any t1, t2 ∈ [0, 1] with |t1 − t2| < δ,
|Gt (t1, s)−Gt (t2, s)| < ε

ΛR , s ∈ [0, 1]. So,

|w′
k(t1)− w′

k(t2)| = |(Tuk)
′(t1)− (Tuk)

′(t2)|

=

∣∣∣∣
∫ 1

0

(Gt(t1, s)−Gt(t2, s))f(s, uk(s), u
′
k(s))ds

∣∣∣∣

≤
∫ 1

0

|Gt(t1, s)−Gt(t2, s)| f(s, uk(s), u
′
k(s))ds

< ε,

which shows that {w′
k}∞k=1is equicontinuous. Again, it follows from Arzela-

Ascoli theorem that {w′
k}∞k=1 has a convergent subsequence in C[0, 1]. Therefore,

{wk}∞k=1 has a convergent subsequence in K.
Next, we prove that T : [v0, w0] → K is continuous.
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Suppose that um, u ∈ [v0, w0] and ‖um−u‖ → 0 (m → ∞). In view of Lemma
2 and (3), for all m, we have

G(t, s)f(s, um(s), u′
m(s)) ≤ tg(s)f(s, um(s), u′

m(s))

≤ ΛRg(s), (t, s) ∈ [0, 1]× [0, 1]

and

Gt(t, s)f(s, um(s), u′
m(s)) ≤ g(s)f(s, um(s), u′

m(s))

≤ ΛRg(s), (t, s) ∈ [0, 1]× [0, 1].

According to Lebesgue Dominated Convergence theorem, we get that

lim
m→∞

(Tum)(t) = lim
m→∞

∫ 1

0

G(t, s)f(s, um(s), u′
m(s))ds

=

∫ 1

0

G(t, s)f(s, lim
m→∞

um(s), lim
m→∞

u′
m(s))ds

=

∫ 1

0

G(t, s)f(s, u(s), u′(s))ds

= (Tu)(t), t ∈ [0, 1]

and

lim
m→∞

(Tum)′(t) = lim
m→∞

∫ 1

0

Gt(t, s)f(s, um(s), u′
m(s))ds

=

∫ 1

0

Gt(t, s)f(s, lim
m→∞

um(s), lim
m→∞

u′
m(s))ds

=

∫ 1

0

Gt(t, s)f(s, u(s), u
′(s))ds

= (Tu)′(t), t ∈ [0, 1] ,

which indicates that T : [v0, w0] → K is continuous.
To sum up, T : [v0, w0] → K is completely continuous.
Step 2. We assert that T is monotone increasing on [v0, w0] .
Suppose that u, v ∈ [v0, w0] and u ≤ v. Then 0 ≤ u(t) ≤ v(t) ≤ R and

0 ≤ u′(t) ≤ v′(t) ≤ R for t ∈ [0, 1]. By (3), we have

(Tu)(t) =

∫ 1

0

G(t, s)f(s, u(s), u′(s))ds

≤
∫ 1

0

G(t, s)f(s, v(s), v′(s))ds

= (Tv)(t), t ∈ [0, 1]
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and

(Tu)′(t) =

∫ 1

0

Gt(t, s)f(s, u(s), u
′(s))ds

≤
∫ 1

0

Gt(t, s)f(s, v(s), v
′(s))ds

= (Tv)′(t), t ∈ [0, 1] ,

which shows that Tu ≤ Tv.
Step 3. We prove that v0 is a lower solution of T .
For any t ∈ [0, 1], we know that

(Tv0)(t) =

∫ 1

0

G(t, s)f(s, 0, 0)ds ≥ 0 = v0(t)

and

(Tv0)
′(t) =

∫ 1

0

Gt(t, s)f(s, 0, 0)ds ≥ 0 = v′0(t),

which implies that v0 ≤ Tv0.
Step 4. We show that w0 is an upper solution of T .
It follows from Lemma 2 and (3) that

(Tw0)(t) =

∫ 1

0

G(t, s)f(s, w0(s), w
′
0(s))ds

≤ ΛRt

∫ 1

0

g(s)ds

= w0(t), t ∈ [0, 1]

and

(Tw0)
′(t) =

∫ 1

0

Gt(t, s)f(s, w0(s), w
′
0(s))ds

≤ ΛR

∫ 1

0

g(s)ds

= w′
0(t), t ∈ [0, 1],

which indicates that Tw0 ≤ w0.
Step 5. We claim that the BVP (2) has monotone positive solutions.
In fact, if we construct sequences {vn}∞n=1 and {wn}∞n=1 as follows:

vn = Tvn−1 and wn = Twn−1, n = 1, 2, 3 · · · ,
then it follows from Theorem 1 that

v0 ≤ v1 ≤ · · · ≤ vn ≤ · · · ≤ wn ≤ · · · ≤ w1 ≤ w0,

and {vn}∞n=0 and {wn}∞n=0 converge to, respectively, v and w ∈ [v0, w0], which
are monotone solutions of the BVP (2). Moreover, for any t ∈ [ ηα , η], by Lemma
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3, we know that

(Tv0)(t) =

∫ 1

0

G(t, s)f(s, 0, 0)ds

≥ γ

∫ 1

0

g(s)f(s, 0, 0)ds

> 0,

and so,

0 < (Tv0)(t) ≤ (Tv)(t) = v(t) ≤ w(t), t ∈ [
η

α
, η],

which shows that v and w are positive solutions of the BVP (2). ¤

4. An example

In this section, an example is given to illustrate the main results of this paper.

Example 1. Consider the following BVP{
u′′′(t) + t+ 1

4u
2(t) + 1

10u
′2(t) = 0, t ∈ (0, 1) ,

u(0) = u′(0) = 0, u′(1) = 3
2u

′(13 ).
(4)

Since α =
3

2
and η =

1

3
, a simple calculation shows that Λ = 6

5 . Thus, if

we choose R = 2, then all the conditions of Theorem 2 are fulfilled. It follows
from Theorem 2 that the BVP (4) has monotone positive solutions v and w.
Furthermore, if we let v0 (t) = 0 and w0 (t) = 2t for t ∈ [0, 1] , then for n =
0, 1, 2 · · · , the two iterative schemes are

vn+1 (t) =




∫ 1

0
t2 (1− s)

(
t+ 1

4v
2
n (s) +

1
10v

′2
n (s)

)
ds

− 1
2

∫ t

0
(t− s)

2
(
t+ 1

4v
2
n (s) +

1
10v

′2
n (s)

)
ds

− 3
2

∫ 1
3

0
t2
(
1
3 − s

) (
t+ 1

4v
2
n (s) +

1
10v

′2
n (s)

)
ds


 , t ∈ [0, 1]

and

wn+1 (t) =




∫ 1

0
t2 (1− s)

(
t+ 1

4w
2
n (s) +

1
10w

′2
n (s)

)
ds

− 1
2

∫ t

0
(t− s)

2
(
t+ 1

4w
2
n (s) +

1
10w

′2
n (s)

)
ds

− 3
2

∫ 1
3

0
t2
(
1
3 − s

) (
t+ 1

4w
2
n (s) +

1
10w

′2
n (s)

)
ds


 , t ∈ [0, 1] .

The first, second, third and fourth terms of the two schemes are as follows:

v0 (t) = 0,

v1 (t) =
5

12
t3 − 1

6
t4,

v2 (t) =
5

12
t3 − 1

6
t4 +

25

384
t6 − 55

576
t7 +

445

6912
t8 − 503

17280
t9 +

5

576
t10 − 1

864
t11,
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v3 (t) =
5

12
t3 − 1

6
t4 +

25

384
t6 − 55

576
t7 +

445

6912
t8 +

1601

138240
t9 − 2735

27648
t10

+
4859

36864
t11 − 785663

7962624
t12 +

57697

1658880
t13 +

10942943

530841600
t14 − 4395781

95551488
t15

+
25402181

573308928
t16 − 43121441

1433272320
t17 +

898651277

57330892800
t18 − 305268569

47775744000
t19

+
1937567

955514880
t20 − 3498011

7166361600
t21 +

12287

143327232
t22 − 1283

119439360
t23

+
35

35831808
t24 − 1

17915904
t25;

w0 (t) = 2t,

w1 (t) =
1

6
t2 +

7

20
t3 +

1

4
t4 − 1

6
t5,

w2 (t) =
5

12
t3 − 35

216
t4 +

59

2160
t5 +

5611

86400
t6 +

1651

36000
t7 − 6983

172800
t8 − 2293

43200
t9

+
59

1280
t10 − 311

17280
t11 +

11

1728
t12 − 1

864
t13,

w3 (t) =
5

12
t3 − 1

6
t4 +

25

384
t6 − 485

5184
t7 +

21505

279936
t8 − 8729

11197440
t9

+
396353

37324800
t10 − 27532421

559872000
t11 − 166052891

44789760000
t12 +

147064543

1749600000
t13

− 161335996543

1791590400000
t14 +

667371689963

22394880000000
t15 − 67365024401

8957952000000
t16

+
20454301621

895795200000
t17 − 102742235323

7166361600000
t18 − 3316750297

398131200000
t19

+
13173971261

716636160000
t20 − 2900165131

179159040000
t21 +

558586477

57330892800
t22

− 122701391

28665446400
t23 +

20462977

14332723200
t24 − 2654267

7166361600
t25 +

16793

238878720
t26

− 1043

119439360
t27 +

1

1327104
t28 − 1

17915904
t29.
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