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MAXIMUM CURVES OF TRANSCENDENTAL ENTIRE

FUNCTIONS OF THE FORM Ep(z)†

JEONG-HEON KIM∗, YOUN OUCK KIM AND MI HWA KIM

Abstract. The function f(z) = ep(z) where p(z) is a polynomial of de-

gree n has 2n Julia lines. Julia lines of ep(z) divide the complex plane into
2n equal sectors with the same vertex at the origin. In each sector, ep(z)

has radial limits of 0 or infinity. Main results of the paper are concerned

with maximum curves of ep(z). We deal with some properties of maxi-
mum curves of ep(z) and we give some examples of the maximum curves

of functions of the form ep(z).
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1. Introduction

For a transcendental entire function f(z), we define maximum functionM(r, f)
and maximum curve Mc(f) as follows:

M(r, f) := max
|z|=r

(|f(z)|), Mc(f) := {z : |f(z)| = M(|z|, f)}.

We call all curves where ∂
∂θ |f(reiθ)| = 0 the beta curves of f(z) as in T. Tylor

[7]. Every maximum curve of f(z) is a beta curve. For example, real line is the
beta curve and positive real line is the maximum curve of f(z) = ez. And its
maximum function is M(r, ez) = er.

We call φ ∈ [0, 2π) a Julia line of the entire funtion f , if in every sector

{z : |arg z − φ| < δ}, δ > 0,

the function f assumes each complex value infinitely often, with at most one
exception.

In this paper, we mainly consider behaviors and maximum curves of transcen-
dental entire functions of the form ep(z) where p(z) is a nonconstant polynomial.
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2. Behaviors of ep(z)

Let {θj} be an increasing sequence of [0, 2π) and Sj := {z : θj < arg z < θj+1}
be open sectors with the common vertex at the origin. We know that if the open
set

⋃∞
j=1(θj , θj+1) is everywhere dense on [0, 2π), then there exists an entire

function f such that

lim
r→∞

f(reiθ) = cj

for each j where reiθ ∈ Sj and cj are preassigned values from C ∪ {∞} (see D.
Gaier [3]).

But the function f(z) = ep(z) takes 0 or infinity as its radial limits on the
equally devided open sectors and the number of open sectors depends on the
degree of the polynomial p(z).

Throughout the paper, p(z) denote polynomial of degree n:

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0, (an 6= 0, n ≥ 1) (1)

where

ak = ske
iαk , z = reiθ (k = 0, 1, 2, · · · , n). (2)

For each j = 0, 1, 2, · · · , 2n− 1, we write

τj = −αn
n

+ (2j − 1)
π

2n
, (3)

and

Lj = {reτj : r > 0}. (4)

We divide the complex plane into 2n open sectors

Sj := {z : τj < arg z < τj+1}, j = 0, 1, 2, · · · , 2n− 1

with the same vertex at the origin.

The following theorem is a well-known result (see Markushevich [6] for de-
tails). Here we regard 0 as an even number for our convenience.

Theorem A. The function f(z) = ep(z) has radial limits on each sector Sj:

lim
|z|=r→∞
z∈Sj

|f(z)| =
{

0, if j is odd,
∞, if j is even.

Furthermore the limits are uniform on any closed subsector of Sj.

For a transcendental entire function f(z), it is known that if there is a nonzero
finite point z0 such that the family {f(2nz)} fails to be normal in every neigh-
borhood of z0, then the ray emanating from the origin and passing through the
point z0 is a Julia line of f(z) and the converse is also true [5, 6]. It is also
known that every transcendental entire function has at least one Julia line [2].
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From the above theorem we can show that the function f(z) = ep(z) has 2n
Julia lines and the locations of the Julia lines are determined by the argument
of the leading coefficient of the polynomial p(z).

Theorem 1. Suppose that p(z) is the polynomial of degree n described as in (1)
and (2) above. Then the function f(z) = ep(z) has 2n Julia lines.

Proof. We will show that every ray Lj(j = 0, 1, · · · , 2n− 1) is a Julia line of
f(z), where Lj is defined as in (4).

For any point z0 on Lj and ε > 0 we can choose two points z1 and z2 from
the neighborhood of z0, N(z0, ε), such that

lim
k→∞

f(2kz1) = 0, and lim
k→∞

f(2kz2) =∞

by Theorem A. So the family {fk(z) := f(2kz)} is not normal at the point z0.
On the other hand, for each point w0 (w0 6= 0) which is not on any ray Lj

(j = 0, 1, · · · , 2n− 1), we can choose a positive number ε such that2n−1⋃
j=0

Lj

 ⋂
N(w0, ε) = ∅.

Then the family {fk(z)} converges identically either to 0 or ∞ on the set
N(w0, ε). Hence the family is normal at w0. Therefore all the rays Lj are
the only Julia lines of f(z). This completes the proof. �

3. Maximum curves

For a transcendental entire function f(z), the maximum function M(r, f) is
strictly increasing and continuous on [0,∞). In this section we discuss some
properties of the maximum curve Mc(f).

Theorem 2. Let

f(z) =

∞∑
n=0

anz
n

be an entire function. Suppose that there exists a point z0 ∈ C \ {0} such that
the principal argument of anz

n
0 are the same for all an 6= 0. Then

|f(z0)| = max
|z|=|z0|

|f(z)| = M(|z0|, f).

Proof. Let θ0 = Arg(anz
n
0 ) for all an 6= 0. We have

Arg(e−iθ0anz
n
0 ) = 0 and e−iθ0anz

n
0 > 0.

So for all z with |z| = |z0|, the inequality

|f(z0)| = |e−iθ0f(z0)| =

∣∣∣∣∣
∞∑
n=0

e−iθ0anz
n
0

∣∣∣∣∣ =

∞∑
n=0

|anzn0 | =
∞∑
n=0

|anzn|
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≥

∣∣∣∣∣
∞∑
n=0

anz
n

∣∣∣∣∣ = |f(z)|

holds. Hence M(|z0|, f) = |f(z0)|. This completes the proof. �

In the above theorem if all the principal argument of anz
n
0 are the same,

then Arg(anz
n
0 ) = Arg(an(rz0)n) for all an 6= 0 and r > 0. Therefore the ray

θ0 = Arg(anz
n
0 ) is a maximum curve of f(z), and its maximum function is given

by

M(r, f) = |f(z)|z=reiθ0 .
To illustrate, we consider the function

sin z =

∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
.

By choosing z0 = i, we have

Arg

(
(−1)n

i2n+1

(2n+ 1)!

)
= Arg

(
i

(2n+ 1)!

)
=
π

2
,

for all n = 0, 1, 2, · · · . Thus θ0 := Arg(z0) = π
2 is a maximum curve of sinz and

its maximum function is given by

M(r, sinz) =

∣∣∣∣eiz − e−iz2i

∣∣∣∣
z=re

π
2
i

=
er − e−r

2
.

Theorem 3. Let f(z) be a nonconstant, zero free entire function. Then the
maximum curves of f(z) intersect the circle |z| = r at finitely many points for
each r > 0.

Proof. Since f(z) is a zero free entire function, there is an entire function g(z)
such that f(z) = eg(z). Suppose that the maximum curves of f(z) pass infinitely
many points {r0eiθα} on the circle |z| = r0. Then the harmonic function Re g(z)
takes the same value logM(r0, f) at points r0e

iθα for all α, yet the set {r0eiθα}
has a limit point on the circle |z| = r0. Hence the harmonic function Re g(z) is a
constant function with the value logM(r0, f) by identity theorem for harmonic
functions which means that the functions g(z) and f(z) are constants on the
complex plane. And it is evident that the maximum curves of f(z) touch at
least one point of the circle |z| = r for all r > 0. This completes proof. �

We have the following

Corollary. If p(z) is a nonconstant polynomial, then the maximum curves of
ep(z) intersect the circle of radius r(> 0) centered at the origin at fiitely many
points.
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Theorem 4. Let f1(z) and f2(z) be noncostants, zero free entire functions. Sup-
pose that f1(z), f2(z) share the maximum curves and that M(r, f1) = M(r, f2).
Then f1(z) and f2(z) have the same modulus for all z ∈ C.

Proof. Let g1(z) and g2(z) be entire functions such that f1(z) = eg1(z) and
f2(z) = eg2(z). Let uj(z) := Re gj(z) and let vj(z) be a harmonic conjugate of
uj(z), j = 1, 2. Since M(r, f1) = M(r, f2), we have u1(z) = u2(z), and there is
a real number α such that

v1(z) = v2(z) + α

for all z on the maximum curves. So g1(z) and g2(z) can be written as

g1(z) = u1(z) + iv1(z) (5)

and

g2(z) = u2(z) + iv2(z) = g1(z) + iα (6)

for all z ∈ C by the identity theorem.
The equations (5) and (6) lead to∣∣∣∣f(z)

g(z)

∣∣∣∣ =

∣∣∣∣eg1(z)eg2(z)

∣∣∣∣ =

∣∣∣∣ 1

eiα

∣∣∣∣ = 1,

the described result. �

Corollary. Let p1(z) and p2(z) be nonconstant polynomials. Suppose that ep1(z)

and ep2(z) share the maximum curves and that M(r, ep1(z)) = M(r, ep2(z)). Then
ep1(z) and ep2(z) have the same modulus at each point z ∈ C.

4. Examples

J. Clunie [1] posed the question as to whether the maximum curve Mc(f) can
have an isolated point. And the answer was given by T.Tyler. The following
theorem is due to Tyler [7].

Theorem B. If for an entire function f(z), two different beta curves meet at a
point z0 = r0e

iθ0 , r0 > 0, then

d

dz

{
f ′(z)

f(z)

} ∣∣∣
z=r0eiθ0

= 0.

Tyler gave an example of an entire function whose maximum point is isolated:
polynomial p(z) = C(z2 + 1)2 + z(z2 − 1)2, C > 1 has an isolated maximum
point at z0 = −1.

Example 1. The function ep(z), where p(z) = C(z2 + 1)2 + z(z2 − 1)2, C > 1
has the same property i.e., ep(z) has an isolated maximum point at z = −1.
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This can be seen as follows: on the unit circle |z| = 1,

Re p(z) ≤ |p(z)| ≤ C

∣∣∣∣∣z2
(
z +

1

z

)2
∣∣∣∣∣+

∣∣∣∣∣z2
(
z − 1

z

)2
∣∣∣∣∣

≤ 4C cos2 θ + 4 sin2 θ = 4C

[
1−

(
1− 1

C

)
sin2 θ

]
≤ 4C = p(1) = p(−1).

Hence the function
∣∣∣ep(eiθ)∣∣∣ takes a maximum at z = −1, i.e., M(1, ep(z)) =

ep(−1).
And p(r) > p(−r) in some deleted neighborhood of r = −1 of R. Since

d

dz

{
(ep(z))′

ep(z)

} ∣∣∣
z=−1

= 16C − 8 6= 0

the negative real line is the only beta curve passing the point z = −1 by Theorem
B. Hence z = −1 is an isolated maximum point of ep(z).

Example 2. A component of maximum curves of a transcendental entire func-
tion may not start from the origin. It may have finite length and split into
different directions.

As an example consider a polynomial p(z) = z3 + 3z2 − 4z whose real part is

s(r, θ) := Re p(z) = r3 cos 3θ + 3r2 cos 2θ − 4r cos θ
= 4r3 cos3 θ + 6r2 cos2 θ − (3r3 + 4r) cos θ − 3r2.

(7)

We substitute t for cos θ in (7) and let

h(r, t) := 4r3t3 + 6r2t2 − (3r3 + 4r)t− 3r2.

The function h(r, t) has a local maximum at tr = −3−
√
21+9r2

6r when r ≥ 2
3 (1+

√
2)

and has no local maximum when r < 2
3 (1 +

√
2) on the interval −1 ≤ t ≤ 1.

We compare the values of h(r, t) at two end points of the interval and at a
local maximum point:

h(r, tr)− h(r, 1)

 > 0 if 2
3 (1 +

√
2) < r < 25

12 ,
= 0 if r = 25

12 ,
< 0 if r > 25

12 ,
(8)

h(r, tr)− h(r,−1)


> 0 if r > 2

3 (1 +
√

2),

= 0 if r = 2
3 (1 +

√
2),

< 0 if 0 < r < 2
3 (1 +

√
2),

(9)

h(r, 1)− h(r,−1)

 < 0 if r < 2,
= 0 if r = 0,
> 0 if r > 2.

(10)
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The above relations (8-10) lead to the following results:

maxh(r, t) =

 h(r,−1) if 0 < r ≤ 2
3 (1 +

√
2),

h(r, tr) if 2
3 (1 +

√
2) ≤ r ≤ 25

12 ,
h(r, 1) if r ≥ 25

12

and

M(r, ep(z)) =


eh(r,−1) if 0 < r ≤ 2

3 (1 +
√

2),

eh(r,tr) if 2
3 (1 +

√
2) ≤ r ≤ 25

12 ,
eh(r,1) if r ≥ 25

12 .

We note that

tr|r= 2
3 (1+

√
2) = tr =

−3−
√

21 + 9r2

6r

∣∣
r= 2

3 (1+
√
2)

= −1,

and

tr|r= 25
12

= tr =
−3−

√
21 + 9r2

6r

∣∣
r= 25

12

= −43

50
6= 1.

So the maximum curve of ez
3+3z2−4z goes along the negative real line when

0 < r ≤ 2
3 (1+

√
2), and it splits into two curves at r = 2

3 (1+
√

2). On the interval
2
3 (1 +

√
2) ≤ r ≤ 25

12 maximum curves are determined by cos θ = −3−
√
21+9r2

6r .
These two curves do not touch the positive real line. Finally, the curve goes
along the positive real line when r ≥ 25

12 .
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