MAXIMUM CURVES OF TRANSCENDENTAL ENTIRE FUNCTIONS OF THE FORM $E^{p(z) \dagger}$

JEONG-HEON KIM*, YOUN OUCK KIM AND MI HWA KIM

Abstract

The function $f(z)=e^{p(z)}$ where $p(z)$ is a polynomial of degree n has $2 n$ Julia lines. Julia lines of $e^{p(z)}$ divide the complex plane into $2 n$ equal sectors with the same vertex at the origin. In each sector, $e^{p(z)}$ has radial limits of 0 or infinity. Main results of the paper are concerned with maximum curves of $e^{p(z)}$. We deal with some properties of maximum curves of $e^{p(z)}$ and we give some examples of the maximum curves of functions of the form $e^{p(z)}$.

AMS Mathematics Subject Classification: 30D45, 30D20.
Key words and phrases : Radial limit, Julia line, maximum modulus function, maximum curve, isolated maximum point

1. Introduction

For a transcendental entire function $f(z)$, we define maximum function $M(r, f)$ and maximum curve $M_{c}(f)$ as follows:

$$
M(r, f):=\max _{|z|=r}(|f(z)|), \quad M_{c}(f):=\{z:|f(z)|=M(|z|, f)\}
$$

We call all curves where $\frac{\partial}{\partial \theta}\left|f\left(r e^{i \theta}\right)\right|=0$ the beta curves of $f(z)$ as in T. Tylor [7]. Every maximum curve of $f(z)$ is a beta curve. For example, real line is the beta curve and positive real line is the maximum curve of $f(z)=e^{z}$. And its maximum function is $M\left(r, e^{z}\right)=e^{r}$.

We call $\phi \in[0,2 \pi)$ a Julia line of the entire funtion f, if in every sector

$$
\{z:|\arg z-\phi|<\delta\}, \quad \delta>0
$$

the function f assumes each complex value infinitely often, with at most one exception.

In this paper, we mainly consider behaviors and maximum curves of transcendental entire functions of the form $e^{p(z)}$ where $p(z)$ is a nonconstant polynomial.

[^0]
2. Behaviors of $e^{p(z)}$

Let $\left\{\theta_{j}\right\}$ be an increasing sequence of $[0,2 \pi)$ and $S_{j}:=\left\{z: \theta_{j}<\arg z<\theta_{j+1}\right\}$ be open sectors with the common vertex at the origin. We know that if the open set $\bigcup_{j=1}^{\infty}\left(\theta_{j}, \theta_{j+1}\right)$ is everywhere dense on $[0,2 \pi)$, then there exists an entire function f such that

$$
\lim _{r \rightarrow \infty} f\left(r e^{i \theta}\right)=c_{j}
$$

for each j where $r e^{i \theta} \in S_{j}$ and c_{j} are preassigned values from $\mathbb{C} \cup\{\infty\}$ (see D. Gaier [3]).

But the function $f(z)=e^{p(z)}$ takes 0 or infinity as its radial limits on the equally devided open sectors and the number of open sectors depends on the degree of the polynomial $p(z)$.

Throughout the paper, $p(z)$ denote polynomial of degree n :

$$
\begin{equation*}
p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}, \quad\left(a_{n} \neq 0, n \geq 1\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{k}=s_{k} e^{i \alpha_{k}}, z=r e^{i \theta} \quad(k=0,1,2, \cdots, n) \tag{2}
\end{equation*}
$$

For each $j=0,1,2, \cdots, 2 n-1$, we write

$$
\begin{equation*}
\tau_{j}=-\frac{\alpha_{n}}{n}+(2 j-1) \frac{\pi}{2 n} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{j}=\left\{r e^{\tau_{j}}: r>0\right\} \tag{4}
\end{equation*}
$$

We divide the complex plane into $2 n$ open sectors

$$
S_{j}:=\left\{z: \tau_{j}<\arg z<\tau_{j+1}\right\}, j=0,1,2, \cdots, 2 n-1
$$

with the same vertex at the origin.
The following theorem is a well-known result (see Markushevich [6] for details). Here we regard 0 as an even number for our convenience.

Theorem A. The function $f(z)=e^{p(z)}$ has radial limits on each sector S_{j} :

$$
\lim _{\substack{|z|=r \rightarrow \infty \\
z \in S_{j}}}|f(z)|=\left\{\begin{array}{cc}
0, & \text { if } j \text { is odd } \\
\infty, & \text { if } j \text { is even } .
\end{array}\right.
$$

Furthermore the limits are uniform on any closed subsector of S_{j}.

For a transcendental entire function $f(z)$, it is known that if there is a nonzero finite point z_{0} such that the family $\left\{f\left(2^{n} z\right)\right\}$ fails to be normal in every neighborhood of z_{0}, then the ray emanating from the origin and passing through the point z_{0} is a Julia line of $f(z)$ and the converse is also true $[5,6]$. It is also known that every transcendental entire function has at least one Julia line [2].

From the above theorem we can show that the function $f(z)=e^{p(z)}$ has $2 n$ Julia lines and the locations of the Julia lines are determined by the argument of the leading coefficient of the polynomial $p(z)$.

Theorem 1. Suppose that $p(z)$ is the polynomial of degree n described as in (1) and (2) above. Then the function $f(z)=e^{p(z)}$ has $2 n$ Julia lines.

Proof. We will show that every ray $L_{j}(j=0,1, \cdots, 2 n-1)$ is a Julia line of $f(z)$, where L_{j} is defined as in (4).

For any point z_{0} on L_{j} and $\epsilon>0$ we can choose two points z_{1} and z_{2} from the neighborhood of $z_{0}, N\left(z_{0}, \epsilon\right)$, such that

$$
\lim _{k \rightarrow \infty} f\left(2^{k} z_{1}\right)=0, \text { and } \lim _{k \rightarrow \infty} f\left(2^{k} z_{2}\right)=\infty
$$

by Theorem A. So the family $\left\{f_{k}(z):=f\left(2^{k} z\right)\right\}$ is not normal at the point z_{0}.
On the other hand, for each point $w_{0}\left(w_{0} \neq 0\right)$ which is not on any ray L_{j} $(j=0,1, \cdots, 2 n-1)$, we can choose a positive number ϵ such that

$$
\left(\bigcup_{j=0}^{2 n-1} L_{j}\right) \bigcap N\left(w_{0}, \epsilon\right)=\emptyset
$$

Then the family $\left\{f_{k}(z)\right\}$ converges identically either to 0 or ∞ on the set $N\left(w_{0}, \epsilon\right)$. Hence the family is normal at w_{0}. Therefore all the rays L_{j} are the only Julia lines of $f(z)$. This completes the proof.

3. Maximum curves

For a transcendental entire function $f(z)$, the maximum function $M(r, f)$ is strictly increasing and continuous on $[0, \infty)$. In this section we discuss some properties of the maximum curve $M_{c}(f)$.

Theorem 2. Let

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

be an entire function. Suppose that there exists a point $z_{0} \in \mathbb{C} \backslash\{0\}$ such that the principal argument of $a_{n} z_{0}^{n}$ are the same for all $a_{n} \neq 0$. Then

$$
\left|f\left(z_{0}\right)\right|=\max _{|z|=\left|z_{0}\right|}|f(z)|=M\left(\left|z_{0}\right|, f\right)
$$

Proof. Let $\theta_{0}=\operatorname{Arg}\left(a_{n} z_{0}^{n}\right)$ for all $a_{n} \neq 0$. We have

$$
\operatorname{Arg}\left(e^{-i \theta_{0}} a_{n} z_{0}^{n}\right)=0 \text { and } e^{-i \theta_{0}} a_{n} z_{0}^{n}>0
$$

So for all z with $|z|=\left|z_{0}\right|$, the inequality

$$
\left|f\left(z_{0}\right)\right|=\left|e^{-i \theta_{0}} f\left(z_{0}\right)\right|=\left|\sum_{n=0}^{\infty} e^{-i \theta_{0}} a_{n} z_{0}^{n}\right|=\sum_{n=0}^{\infty}\left|a_{n} z_{0}^{n}\right|=\sum_{n=0}^{\infty}\left|a_{n} z^{n}\right|
$$

$$
\geq\left|\sum_{n=0}^{\infty} a_{n} z^{n}\right|=|f(z)|
$$

holds. Hence $M\left(\left|z_{0}\right|, f\right)=\left|f\left(z_{0}\right)\right|$. This completes the proof.
In the above theorem if all the principal argument of $a_{n} z_{0}^{n}$ are the same, then $\operatorname{Arg}\left(a_{n} z_{0}^{n}\right)=\operatorname{Arg}\left(a_{n}\left(r z_{0}\right)^{n}\right)$ for all $a_{n} \neq 0$ and $r>0$. Therefore the ray $\theta_{0}=\operatorname{Arg}\left(a_{n} z_{0}^{n}\right)$ is a maximum curve of $f(z)$, and its maximum function is given by

$$
M(r, f)=|f(z)|_{z=r e^{i \theta_{0}}}
$$

To illustrate, we consider the function

$$
\sin z=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!}
$$

By choosing $z_{0}=i$, we have

$$
\operatorname{Arg}\left((-1)^{n} \frac{i^{2 n+1}}{(2 n+1)!}\right)=\operatorname{Arg}\left(\frac{i}{(2 n+1)!}\right)=\frac{\pi}{2}
$$

for all $n=0,1,2, \cdots$. Thus $\theta_{0}:=\operatorname{Arg}\left(z_{0}\right)=\frac{\pi}{2}$ is a maximum curve of $\sin z$ and its maximum function is given by

$$
M(r, \sin z)=\left|\frac{e^{i z}-e^{-i z}}{2 i}\right|_{z=r e^{\frac{\pi}{2} i}}=\frac{e^{r}-e^{-r}}{2}
$$

Theorem 3. Let $f(z)$ be a nonconstant, zero free entire function. Then the maximum curves of $f(z)$ intersect the circle $|z|=r$ at finitely many points for each $r>0$.

Proof. Since $f(z)$ is a zero free entire function, there is an entire function $g(z)$ such that $f(z)=e^{g(z)}$. Suppose that the maximum curves of $f(z)$ pass infinitely many points $\left\{r_{0} e^{i \theta_{\alpha}}\right\}$ on the circle $|z|=r_{0}$. Then the harmonic function $\operatorname{Re} g(z)$ takes the same value $\log M\left(r_{0}, f\right)$ at points $r_{0} e^{i \theta_{\alpha}}$ for all α, yet the set $\left\{r_{0} e^{i \theta_{\alpha}}\right\}$ has a limit point on the circle $|z|=r_{0}$. Hence the harmonic function $\operatorname{Re} g(z)$ is a constant function with the value $\log M\left(r_{0}, f\right)$ by identity theorem for harmonic functions which means that the functions $g(z)$ and $f(z)$ are constants on the complex plane. And it is evident that the maximum curves of $f(z)$ touch at least one point of the circle $|z|=r$ for all $r>0$. This completes proof.

We have the following

Corollary. If $p(z)$ is a nonconstant polynomial, then the maximum curves of $e^{p(z)}$ intersect the circle of radius $r(>0)$ centered at the origin at fitely many points.

Theorem 4. Let $f_{1}(z)$ and $f_{2}(z)$ be noncostants, zero free entire functions. Suppose that $f_{1}(z), f_{2}(z)$ share the maximum curves and that $M\left(r, f_{1}\right)=M\left(r, f_{2}\right)$. Then $f_{1}(z)$ and $f_{2}(z)$ have the same modulus for all $z \in \mathbb{C}$.

Proof. Let $g_{1}(z)$ and $g_{2}(z)$ be entire functions such that $f_{1}(z)=e^{g_{1}(z)}$ and $f_{2}(z)=e^{g_{2}(z)}$. Let $u_{j}(z):=\operatorname{Re} g_{j}(z)$ and let $v_{j}(z)$ be a harmonic conjugate of $u_{j}(z), j=1,2$. Since $M\left(r, f_{1}\right)=M\left(r, f_{2}\right)$, we have $u_{1}(z)=u_{2}(z)$, and there is a real number α such that

$$
v_{1}(z)=v_{2}(z)+\alpha
$$

for all z on the maximum curves. So $g_{1}(z)$ and $g_{2}(z)$ can be written as

$$
\begin{equation*}
g_{1}(z)=u_{1}(z)+i v_{1}(z) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{2}(z)=u_{2}(z)+i v_{2}(z)=g_{1}(z)+i \alpha \tag{6}
\end{equation*}
$$

for all $z \in \mathbb{C}$ by the identity theorem.
The equations (5) and (6) lead to

$$
\left|\frac{f(z)}{g(z)}\right|=\left|\frac{e^{g_{1}(z)}}{e^{g_{2}(z)}}\right|=\left|\frac{1}{e^{i \alpha}}\right|=1
$$

the described result.

Corollary. Let $p_{1}(z)$ and $p_{2}(z)$ be nonconstant polynomials. Suppose that $e^{p_{1}(z)}$ and $e^{p_{2}(z)}$ share the maximum curves and that $M\left(r, e^{p_{1}(z)}\right)=M\left(r, e^{p_{2}(z)}\right)$. Then $e^{p_{1}(z)}$ and $e^{p_{2}(z)}$ have the same modulus at each point $z \in \mathbb{C}$.

4. Examples

J. Clunie [1] posed the question as to whether the maximum curve $M_{c}(f)$ can have an isolated point. And the answer was given by T.Tyler. The following theorem is due to Tyler [7].

Theorem B. If for an entire function $f(z)$, two different beta curves meet at a point $z_{0}=r_{0} e^{i \theta_{0}}, r_{0}>0$, then

$$
\left.\frac{d}{d z}\left\{\frac{f^{\prime}(z)}{f(z)}\right\}\right|_{z=r_{0} e^{i \theta_{0}}}=0
$$

Tyler gave an example of an entire function whose maximum point is isolated: polynomial $p(z)=C\left(z^{2}+1\right)^{2}+z\left(z^{2}-1\right)^{2}, C>1$ has an isolated maximum point at $z_{0}=-1$.

Example 1. The function $e^{p(z)}$, where $p(z)=C\left(z^{2}+1\right)^{2}+z\left(z^{2}-1\right)^{2}, C>1$ has the same property i.e., $e^{p(z)}$ has an isolated maximum point at $z=-1$.

This can be seen as follows: on the unit circle $|z|=1$,

$$
\begin{aligned}
\operatorname{Re} p(z) & \leq|p(z)| \leq C\left|z^{2}\left(z+\frac{1}{z}\right)^{2}\right|+\left|z^{2}\left(z-\frac{1}{z}\right)^{2}\right| \\
& \leq 4 C \cos ^{2} \theta+4 \sin ^{2} \theta=4 C\left[1-\left(1-\frac{1}{C}\right) \sin ^{2} \theta\right] \\
& \leq 4 C=p(1)=p(-1)
\end{aligned}
$$

Hence the function $\left|e^{p\left(e^{i \theta}\right)}\right|$ takes a maximum at $z=-1$, i.e., $M\left(1, e^{p(z)}\right)=$ $e^{p(-1)}$.

And $p(r)>p(-r)$ in some deleted neighborhood of $r=-1$ of \mathbb{R}. Since

$$
\left.\frac{d}{d z}\left\{\frac{\left(e^{p(z)}\right)^{\prime}}{e^{p(z)}}\right\}\right|_{z=-1}=16 C-8 \neq 0
$$

the negative real line is the only beta curve passing the point $z=-1$ by Theorem B. Hence $z=-1$ is an isolated maximum point of $e^{p(z)}$.

Example 2. A component of maximum curves of a transcendental entire function may not start from the origin. It may have finite length and split into different directions.

As an example consider a polynomial $p(z)=z^{3}+3 z^{2}-4 z$ whose real part is

$$
\begin{align*}
s(r, \theta):=\operatorname{Re} p(z) & =r^{3} \cos 3 \theta+3 r^{2} \cos 2 \theta-4 r \cos \theta \\
& =4 r^{3} \cos ^{3} \theta+6 r^{2} \cos ^{2} \theta-\left(3 r^{3}+4 r\right) \cos \theta-3 r^{2} \tag{7}
\end{align*}
$$

We substitute t for $\cos \theta$ in (7) and let

$$
h(r, t):=4 r^{3} t^{3}+6 r^{2} t^{2}-\left(3 r^{3}+4 r\right) t-3 r^{2}
$$

The function $h(r, t)$ has a local maximum at $t_{r}=\frac{-3-\sqrt{21+9 r^{2}}}{6 r}$ when $r \geq \frac{2}{3}(1+\sqrt{2})$ and has no local maximum when $r<\frac{2}{3}(1+\sqrt{2})$ on the interval $-1 \leq t \leq 1$.

We compare the values of $h(r, t)$ at two end points of the interval and at a local maximum point:

$$
\begin{align*}
& h\left(r, t_{r}\right)-h(r, 1) \quad\left\{\begin{array}{lll}
>0 & \text { if } & \frac{2}{3}(1+\sqrt{2})<r<\frac{25}{12}, \\
=0 & \text { if } & r=\frac{25}{12}, \\
<0 & \text { if } & r>\frac{25}{12},
\end{array}\right. \tag{8}\\
& h\left(r, t_{r}\right)-h(r,-1) \quad\left\{\begin{array}{lll}
>0 & \text { if } r>\frac{2}{3}(1+\sqrt{2}), \\
=0 & \text { if } r=\frac{2}{3}(1+\sqrt{2}), \\
<0 & \text { if } 0<r<\frac{2}{3}(1+\sqrt{2}),
\end{array}\right. \tag{9}\\
& h(r, 1)-h(r,-1) \quad\left\{\begin{array}{lll}
<0 & \text { if } & r<2, \\
=0 & \text { if } & r=0, \\
>0 & \text { if } & r>2 .
\end{array}\right. \tag{10}
\end{align*}
$$

The above relations (8-10) lead to the following results:

$$
\max h(r, t)=\left\{\begin{array}{lll}
h(r,-1) & \text { if } & 0<r \leq \frac{2}{3}(1+\sqrt{2}) \\
h\left(r, t_{r}\right) & \text { if } & \frac{2}{3}(1+\sqrt{2}) \leq r \leq \frac{25}{12} \\
h(r, 1) & \text { if } & r \geq \frac{25}{12}
\end{array}\right.
$$

and

$$
M\left(r, e^{p(z)}\right)=\left\{\begin{array}{lll}
e^{h(r,-1)} & \text { if } \quad 0<r \leq \frac{2}{3}(1+\sqrt{2}) \\
e^{h\left(r, t_{r}\right)} & \text { if } \quad \frac{2}{3}(1+\sqrt{2}) \leq r \leq \frac{25}{12} \\
e^{h(r, 1)} & \text { if } \quad r \geq \frac{25}{12}
\end{array}\right.
$$

We note that

$$
\left.t_{r}\right|_{r=\frac{2}{3}(1+\sqrt{2})}=t_{r}=\left.\frac{-3-\sqrt{21+9 r^{2}}}{6 r}\right|_{r=\frac{2}{3}(1+\sqrt{2})}=-1,
$$

and

$$
\left.t_{r}\right|_{r=\frac{25}{12}}=t_{r}=\left.\frac{-3-\sqrt{21+9 r^{2}}}{6 r}\right|_{r=\frac{25}{12}}=-\frac{43}{50} \neq 1 .
$$

So the maximum curve of $e^{z^{3}+3 z^{2}-4 z}$ goes along the negative real line when $0<r \leq \frac{2}{3}(1+\sqrt{2})$, and it splits into two curves at $r=\frac{2}{3}(1+\sqrt{2})$. On the interval $\frac{2}{3}(1+\sqrt{2}) \leq r \leq \frac{25}{12}$ maximum curves are determined by $\cos \theta=\frac{-3-\sqrt{21+9 r^{2}}}{6 r}$. These two curves do not touch the positive real line. Finally, the curve goes along the positive real line when $r \geq \frac{25}{12}$.

References

1. J. M. Anderson, K. F. Barth and D. A. Brannan, Research problems in complex analysis, Bull. London math. Soc. 9 (1977), 129-162.
2. C. T. Chuang, Normal Families of Meromorphic Functions, World Scientific, Singapore, 1993.
3. D. Gaier, Lectures on Complex approximation, Birkhäuser, Boston, 1987.
4. G. Julia, Leçons sur les fonctions uniformes à Point singulier essentiel Isolé, Imprimerie Gauthier-Villar, Paris, 1924.
5. J. -H. Kim, K. H. Kwon and S. B. Park, On the normality of translated families of transcendental entire functions, J. of Appl. Math and Comp. 17(2005), 573-583.
6. A. I. Markushevich (trans. and ed. by R. A. Silverman), Theory and Functions of a Complex Variable, Chelsea Publ. Co., New York, 1977.
7. T. F. Tyler, Maximum curves and isolated points of entire functions, Proc. of the Amer. Math. Soc. 128(2000)9, 2561-2568.

Jeong-Heon Kim is a professor of Mathematics at the Soongsil University. His research interests focus on entire and meromorphic functions.

Department of Mathematics, Soongsil University, Seoul 156-743, Korea
e-mail: jkim@ssu.ac.kr
Youn Ouck Kim is a graduate student of Soongsil University. e-mail: younoogee@ssu.ac.kr

Mi Hwa Kim is a graduate student of Soongsil University.
e-mail: fortune0124@ssu.ac.kr

[^0]: Received August 6, 2010. Accepted November 25, 2010. * Corresponding author.
 ${ }^{\dagger}$ This work was supported by the research grant of the University
 (c) 2011 Korean SIGCAM and KSCAM.

