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SOME WAITING TIME ANALYSIS FOR CERTAIN

QUEUEING POLICIES

JONG SEUL LIM

Abstract. In a M/G/I queue where the server alternates between busy
and idle periods, we assume that firstly customers arrive at the system
according to a Poisson process and the arrival process and customer service
times are mutually independent, secondly the system has infinite waiting
room, thirdly the server utilization is less than 1 and the system has reached
a steady state. With these assumptions, we analyze waiting times on the
systems where some vacation policies are considered.
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1. Introduction

Let us first define an M/G/I queue where the server alternates between busy
and idle periods. In this system, the assumptions are made as follows: 1) Cus-
tomers arrive at the system according to a poisson process with rate λ, and
have a general service time with a Laplace Transform, X∗(s), where its first two
moments, x and x2, are finite. Further, the arrival process and customer service
times are mutually independent, and are also independent of any measure of
past system behavior; 2) The system has infinite waiting room; 3) The server
utilization (ρ = λx) is less than 1 and the system has reached a steady state.
After serving all customers or returning from certain vacations, the server de-
pending on the system behavior prior to that time epoch, may decide to remain
in the system or to take a new vacation. Such decision is called a vacation de-
cision and the time is a decision epoch. If a vacation is taken, its length may
also depend on past system history. The vacation lengths are characterized by a
limiting distribution function in the way specified by in [7]. Despite the possible
dependency of the vacation policy on past system behavior, future arrivals and
service times are not affected by the policy or the vacation length. To fully
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specify a policy, we specify the server will take another vacation if the system
is still empty upon returning from a vacation and server will start a vacation at
a later time, given that the server first chooses to remain idle after serving all
customers, and that the system is still empty at the start of the vacation. We
treat a vacation in the system as a special customer with a service time equal to
the vacation length. Thus, as the service discipline is the first come first service,
the amount of work found by an arriving customer is equal to his waiting time.

2. Combination of individual vacation and idle time

Under this policy, the server, after serving all customers, decides whether to
take a vacation or to remain idle in the system. If a vacation is taken and the
system is still empty when the server returns from the vacation, the server again
chooses between taking another vacation or staying idle. Once the server decides
to stay idle, it remains in the system until customer arrive and are completely
served. Then, the process for vacation decisions repeats.

Let αv be the long-term fraction of decision epochs at which the server chooses
to take a vacation. Thus, 1−αv is the fraction that the server chooses to remain
idle. It is assumed that the decision of taking a vacation is independent of the
vacation length. Similar to the previous discussion, we construct Zv(t̂) for this
vacation policy. As defined previously, a cycle is the time interval in t̂ between
two decision epochs. Clearly, given that a vacation is taken, the average cycle
length is the average vacation length. If the server choose to be idle, the average
length for the idle time until the next sampling point is 1/λ. Unconditioning these
two situations with αv and 1−αv, the average cycle length is c = αv v+(1−αv)/λ.
Based on this and the poisson-arrivals-see-time-averages property, we have

P0 =
(1− αv)/λ

c
=

(1− αv)

αvvλ+ 1− αv
.

The Laplace transform for the waiting time, i.e, amount of work seen by a
random arrival is

U∗
B(s) =

1− ρ

s− λ+ λX∗(s)

{
(1− αv)s+ λαv[1− V ∗(s)]

1 + αv(λv − 1)

}
.

3. Single vacation with the delay

Under the policy of delayed single vacation, the server after serving all cus-
tomers remains in the system for a period of time. Let this time be referred to as
changeover time. The changeover time may be used to model the delay incurred
in changing the server from service mode to vacation mode. If any customer
arrives during the changeover time, then the server starts to serve the customer
without delay. After all customers are served, the vacation decision repeats. If
no customer arrives during the changeover time, then the server takes a single
vacation. At the end of the vacation, the server either stays idle if the system is
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empty or starts to serve the backlogged customers. After customers have been
completely served, another vacation decision occurs again.

Although a changeover time denoted by r and a vacation length may depend
on the past system behavior, they are assumed to be mutually independent of
each other. Let the average, the stationary pdf and the Laplace transform for r
be denoted by r, r(y) and R∗(s), respectively. The process Zv(t̂) for this policy
is constructed. As defined previously, a cycle is the virtual time interval between
two decision epochs.

Two cases arise depending on whether or not a sampling point arrives before
the end of a changeover time. If no sampling point arrives a changeover time,
a single vacation is started. Hence, the average cycle length in this case is
ra + r + v∗(λ)/λ where

ra =
1

R∗(λ)

∫ ∞

0

yr(y)e−λydy (1)

is the conditional average changeover time given that no sampling point ar-
rives during the time period. The probability of the occurrence of this case is
R∗(λ) =

∫∞
0

e−λyr(y)dy. In the second case, a sampling point arrives before the
changeover time expires and immediately after the sampling point is a decision
epoch. Let ra denote the average length of virtual time from the start of the
changeover time until the first sampling point arrives. Then, the average cycle
length for this case is ra. By conditional probability, ra is given by

ra =
1

λ
− 1

1−R∗(λ)

∫ ∞

0

yr(y)e−λydy. (2)

The probability of occurrence of this case is 1 − R∗(λ). Hence, unconditioning
both cases gives the average cycle length,

c = R∗(λ)
[
ra + v +R∗(λ)

1

λ

]
+
[
1−R∗(λ)

]
ra.

We note that the server is idle during certain portion of virtual time in a
cycle. The average length of this idle time in each cycle is

R∗(λ)
[
ra + V ∗(λ)/λ

]
+
[
1−R(λ)

]
ra.

Based on this and the poisson-arrivals-see-time-averages property, we get

P0 =
R∗(λ)

[
ra + V ∗(λ) 1λ

]
+
[
1−R∗(λ)

]
ra

R∗(λ)
[
ra + v +R∗(λ) 1λ

]
+
[
1−R∗(λ)

]
ra

.

This yields the Laplace transform for waiting time for this vacation policy.

4. Alternating vacation and wait periods

In this policy, the server takes a vacation after serving all customers. Upon
returning from the vacation, the server starts serving the backlogged customers,
if any. In case the system is still empty at that time, the server waits in the
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system for the next arrival for a period of time referred to as a wait period.
When the customer arrives, service is started immediately without further delay.
However, if no customer arrives during the wait period, the server takes another
vacation. Then, the process of vacation and wait periods repeats until customers
arrive and are exhaustively served. At that point in time, the alternation of
vacation and wait periods occurs again.

Assume that the vacation lengths and wait periods from an alternation re-
newal sequence. Further, let the r.v., the mean, the pdf and the Laplace trans-
form for the length of a wait period be r̃, r, r(y) and R∗(s), respectively. As a
result, R∗(λ) is the probability that no customer arrives during a wait period.
The process Zv(t̂) for this policy can be constructed. We define a cycle as the
time interval in t̂ between the beginnings of two vacations taken immediately
after the server servers all customers. It is easy to verify that the average cycle
length is

c =

∞∑

k=0

[
V ∗(λ)R∗(λ)

]k{
v + V ∗(λ)R∗(λ)ra + V ∗(λ)

[
1−R∗(λ)

]
ra

}

=
v + V ∗(λ)R∗(λ)ra + V ∗(λ)

[
1−R∗(λ)

]
ra

1− V ∗(λ)R∗(λ)
(3)

where ra is the average length of a wait period conditioned that no customer
arrives, while ra is the average time from the start of a wait period until the
arrival of the next customer, given that at least one customer arrival during the
wait period. These quantities are given by (1) and (2), respectively.

The last two terms in the numerator of (3) represent the average time in-
terval during an average cycle at which the server is idle in the system. Using
the poisson-arrivals-see-time-averages property, the probability that a sampling
point finds the server being idle upon arrival is

P0 =
V ∗(λ)R∗(λ)ra + V ∗(λ)

[
1−R∗(λ)

]
ra

v + V ∗(λ)R∗(λ)ra + V ∗(λ)
[
1−R∗(λ)

]
ra

.

This yields the Laplace transform for waiting time for this policy.

5. Combination types of vacation with idle times

This policy considers (a) the system has a finite number, N, types of vacation,
and (b) if the system is still empty after all types of vacation have been taken
sequentially, the server stays idle in the system to wait for the next arrival.

Let a cycle for Zv(t̂) be the virtual time period between the start of two
adjacent type-1 vacation. The average cycle length for the policy is

c =

N∑

k=1

k−1∏

j=1

V ∗
j (λ)vk +

N∏

j=1

V ∗
j (λ)

1

λ
.
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Again, we note that the last term is the average duration of a cycle for which
the server is idle. Using the poisson-arrivals-see-time-averages property, we have

P0 =

N∏
j=1

V ∗
j (λ)

λ
N∑

k=1

k−1∏
j=1

V ∗
j (λ)vk +

N∏
j=1

V ∗
j (λ)

.

Similarly, the average duration of t̂ for which Zv(t̂) corresponds to a type-i

vacation is
i−1∏
j=1

V ∗
j (λ)vi. Thus, by the poisson-arrivals-see-time-averages property,

the probability that a sampling that a sampling point finds Zv(t̂) having type-i
vacation work is

Pi =

λ
N∏
j=1

V ∗
j (λ)vi

λ
N∑

k=1

k−1∏
j=1

V ∗
j (λ)vk +

N∏
j=1

V ∗
j (λ)

.

This gives the Laplace transform for the customer waiting time.

6. Conclusions

We analyzed the waiting times with some vacation policies. Some equations
of the combination of individual vacation and idle time, single vacation with the
delay, alternating vacation and wait periods, and combination types of vacation
with idle times, based on the poisson-arrivals-see-time-averages property, have
been obtained.

The analysis approach in this paper may be applicable to other related queue-
ing models like variants of priority queues. These results can serve as a basis
for the formulation and solution of certain optimization problems involved with
vacation models. Using the analysis on the vacation system.

References

1. Altinkerner, K. Average Waiting of Customer in An M/D/k Queue With Nonpreemptive
Priorities, Vol. 25, No 4, 317-328, 1999.

2. Doshi, B.T. A Note on Stochastic Decomposition in a GI/G/1 Queue with Vacations or
Set-Up Times, J. Appl. Prob., 22, 419-428, 1985.

3. Fuhrmann, S.W. and Cooper, R.B. Stochastic Decompositions in the M/G/1 Queue with
Generalized Vacations, Opns.Res., 33, 1117-1129, 1985.

4. Harrison, J. M. Brownian models of queueing network with heterogeneous customer popu-
lations, Stochastic Differential Systems, Stochastic Control Theory and Applications, W.
Fleming and P. L. Lions Eds., Springer-Verlag, 147-186, 1998.

5. Johnson, D. P. Diffusion approximations for optimal filtering of jump processes and for
queueing network, Ph. D. Thesis, University of Wisconsin, 1983.

6. Kleinrock, L. Queueing Systems Vol.II: Computer Application, John Wiley & Sons, Inc.,
New York, 1976.



474 Jong Seul Lim

7. Wolff ,R.W. Sample-Path Derivations of the Excess, Age, and Spread Distributions, J.
Appl. Prob. 25, 432-436, 1988.

Jong Seul Lim received the BS degree from Seoul National University and the Ph.D
degree in communications and operations engineering from Polytechnic University, New
York, in 1988. He worked with AT&T Bell Laboratories and developed the computer
network and cellular communication systems. After then, he joined SK Telecom Corp.
Since 1993, he has worked with Sunmoon University, Korea as a professor.
e-mail: jslsky7@hotmail.com


