DOI QR코드

DOI QR Code

INVOLUTORY AND S+1-POTENCY OF LINEAR COMBINATIONS OF A TRIPOTENT MATRIX AND AN ARBITRARY MATRIX

  • Bu, Changjiang (Department of Applied Mathematics, College of Science, Harbin Engineering University) ;
  • Zhou, Yixin (Department of Applied Mathematics, College of Science, Harbin Engineering University)
  • 투고 : 2010.03.07
  • 심사 : 2010.06.16
  • 발행 : 2011.01.30

초록

Let $A_1$ and $A_2$ be $n{\times}n$ nonzero complex matrices, denote a linear combination of the two matrices by $A=c_1A_1+c_2A_2$, where $c_1$, $c_2$ are nonzero complex numbers. In this paper, we research the problem of the linear combinations in the general case. We give a sufficient and necessary condition for A is an involutive matrix and s+1-potent matrix, respectively, where $A_1$ is a tripotent matrix, with $A_1A_2=A_2A_1$. Then, using the results, we also give the sufficient and necessary conditions for the involutory of the linear combination A, where $A_1$ is a tripotent matrix, anti-idempotent matrix, and involutive matrix, respectively, and $A_2$ is a tripotent matrix, idempotent matrix, and involutive matrix, respectively, with $A_1A_2=A_2A_1$.

키워드

참고문헌

  1. C.R. Rao and S.K. Mitra, Generalized Inverse of matrices and its applications, John Wiley, New York, 1971.
  2. G.A.F. Seber, Linear regression analysis, John Wiley, New York, 1977.
  3. F.A. Graybill, Introduction to matrices with applications in statistics, Wadsworth Publishing Company Inc., California, 1969.
  4. B. Baldessari, The distribution of a quadratic form of normal random variables, Ann. Math. Statist 38 (1967), 1700-1704. https://doi.org/10.1214/aoms/1177698604
  5. C.D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, 2000.
  6. N.A. Gromov, The matrix quantum unitary Cayley-Klein groups, J. Phys. A 26 (1993), 5-8. https://doi.org/10.1088/0305-4470/26/1/002
  7. M.A. Ovchinnikov, Properties of Viro-Turaev representations of the mapping class group of a Torus, J. Math. Sci. (NY) 113 (2003), 856-867. https://doi.org/10.1023/A:1021299705329
  8. M.M. Mestechkin, Restricted Hartree-Fock method instability, Int. J. Quant. Chem. 13 (1978), 469-481. https://doi.org/10.1002/qua.560130403
  9. H.A. Bethe and E.E. Salpeter, Quantum Mechanics of One-and Two-electron Atom, Plenum Pub. Co., New York, 1997.
  10. S.L. Adler, Quaternionic Quantum Mechanics and Quantum Fields, Oxford University Press Inc., New York, 1995.
  11. D. Cobb, Descriptor variable systems and optimal state regulation, IEEE Trans. Automatic Control. AC-28 (1983), 601-611.
  12. F.L. Lewis, Preliminary notes on optimal control for singular system, Proc. 24th IEEE Conference on Decision and Control (1985), 266-272.
  13. J.K. Baksalary and O.M. Baksalary, Idempotency of linear combinations of two idempotent matrices, Linear Algebra Appl. 321 (2000), 3-7. https://doi.org/10.1016/S0024-3795(00)00225-1
  14. J.K. Baksalary, O.M. Baksalary and G.P.H. Styan, Idempoentcy of linear combinations of an idempotent matrix and a tripotent matrix, Linear Algebra Appl. 354 (2002), 21-34. https://doi.org/10.1016/S0024-3795(02)00343-9
  15. O.M. Baksalary and J. Benitez, Idempotency of linear combinations of three idempotent matrices, two of which are commuting, Linear Algebra Appl. 424 (2007), 320-337. https://doi.org/10.1016/j.laa.2007.02.016
  16. M. Sarduvan and H. Ozdemir, On linear combinations of two tripotent, idempotent, and involutive matrices, Appl. Math. Comp. 200 (2008), 401-406. https://doi.org/10.1016/j.amc.2007.11.019
  17. H. Ozdemir, M. Sarduvan, A.Y. Ozban and N. Guler, On idempotency and tripotency of linear combinations of two commuting tripotent matrices, Appl. Math. Comp. 207 (2009), 197-201. https://doi.org/10.1016/j.amc.2008.10.017
  18. C. Bu, Linear maps preserving Drazin inverses of matrices over fields, Linear Algebra Appl. 396 (2005), 159-173.
  19. X. Zhang and C. Cao, Additive operators presserving identity matrices, Harbin Press, 2001.