J. Appl. Math. & Informatics Vol. **29**(2011), No. 1 - 2, pp. 497 - 504 Website: http://www.kcam.biz

ON SPECIAL CONFORMALLY FLAT SPACES WITH WARPED PRODUCT METRICS

BYUNG HAK KIM[†], SANG DEOK LEE^{*}, JIN HYUK CHOI AND YOUNG OK LEE

ABSTRACT. In 1973, B. Y. Chen and K. Yano introduced the special conformally flat space for the generalization of a subprojective space. The typical example is a canal hypersurface of a Euclidean space. In this paper, we study the conditions for the base space B to be special conformally flat in the conharmonically flat warped product space $B^n \times_f R^1$. Moreover, we study the special conformally flat warped product space $B^n \times_f F^p$ and characterize the geometric structure of $B^n \times_f F^p$.

AMS Mathematics Subject Classification : 53B20, 53C21. *Key words and phrases* : conformally flat, special conformally flat, conharmonically flat.

1. Introduction

The conformal transformation on the Riemannian manifold is characterized by the conformal change of the Riemannian metric and does not change the angle between two vectors at a point. The Weyl conformal curvatures C(see(2.1)) and 3-tensor D (see(2.2)) are conformal invariants.

The Riemannian manifold (M, g) is called conformally flat if, for each x in M, there exist a neighborhood V of x and a C^{∞} function f on V such that $(V, e^{2f}g)$ is flat ([1,3]). It is well known that ([1,3]) M is conformally flat if and only if C = 0 for m > 3, D = 0 for m = 3, where m is the dimension of M.

In 1930, B. Kagan([6,7]) introduced the subprojective space which is a kind of conformally flat space, and in 1973, B.Y. Chen and K. Yano([4]) introduced a special conformally flat space which is a generalization of the subprojective space. Every conformally flat hypersurface of a Euclidean space and canal hypersurface of a Euclidean space are examples of a special conformally flat space([4]).

Received July 14, 2010. Accepted October 7, 2010. *Corresponding author.

[†]The first author was supported by the Sabbatical year program 2009 of Kyung Hee University. © 2011 Korean SIGCAM and KSCAM.

The conharmonic transformation is a conformal transformation preserving the harmonicity of a certain function. The conharmonic curvature tensor T (see (2.4)) is invariant under the conharmonic transformation.

In [9], present authors proved that if the warped product space $B^n \times_f R^1(n > 3, K > 0)$ is conharmonically flat, then B is a special conformally flat space. But we can easily see that the warped product of a special conformally flat space and R^1 is not conharmonically flat, in general.

In this point of a view, it is natural to consider the best condition of the warped product of a special conformally flat space and R^1 to be conharmonically flat. For these problems, we investigate the necessary and sufficient conditions of $B^n \times_f R^1$ to be conharmonically flat. Moreover we extend our result of $B^n \times_f R^1$ to $B^n \times_f F^p$ for the general fibre F and characterize the base space and each fibre when $B^n \times_f F^p$ is conharmonically flat.

2. Special conformally flat spaces

A conformal transformation between two Riemannian manifolds (M,g) and (M',g') is a diffeomorphism preserving angle measured by the metrics g and g' respectively. It is characterized by $g' = e^{2\rho}g$, where ρ is a scalar function. In this case g and g' are said to be conformally equivalent. If the function ρ is constant, then the conformal transformation is said to be homothetic([1,3]). The Weyl conformal curvature tensor C which is conformally invariant in an m-dimensional Riemannian manifold M is defined by

(2.1)
$$C(X,Y)Z = R(X,Y)Z - \frac{1}{m-2} \{S(Y,Z)X - g(X,Z)QY + g(Y,Z)QX - S(X,Z)Y\} + \frac{K}{(m-1)(m-2)} \{g(Y,Z)X - g(X,Z)Y\},$$

where R, S and K are curvature tensor, Ricci curvature tensor and scalar curvature of M respectively and g(QX, Y) = S(X, Y). The Weyl conformal curvature 3-tensor D is also conformally invariant and defined by

(2.2)
$$D(X,Y)Z = \nabla_X L(Y,Z) - \nabla_Y L(X,Z),$$

where we have put

(2.3)
$$L(X,Y) = -\frac{S(X,Y)}{m-2} + \frac{K}{2(m-1)(m-2)}g(X,Y).$$

The conharmonic curvature tensor T is defined by

(2.4)
$$T(X,Y)Z = R(X,Y)Z - \frac{1}{m-2} \{S(Y,Z)X - g(X,Z)QY + g(Y,Z)QX - S(X,Z)Y\}$$

which is invariant under conharmonic transformation ([5]).

On a conformally flat Riemannian manifold N, if there exist two functions α and β such that α is positive and

(2.5)
$$L(X,Y) = -\frac{\alpha^2}{2}g(X,Y) + \beta(X\alpha)(Y\alpha)$$

498

then N is called a special conformally flat space([4]). In particular, if β is a function of α , then the special conformally flat space N is called a subprojective space([4,6,7]).

3. Conharmonically flat warped product spaces

Let (B, g) be a *n*-dimensional Riemannian manifold with Riemannian metric g and let $M = B^n \times_f R^1$ be a warped product manifold, where $f : B \to R^+$ is a warping function. Then the curvature tensors \tilde{R} and R of M and B respectively are given by

(3.1)
$$R_{dcb}^{\ a} = R_{dcb}^{\ a}, \quad R_{d1b}^{\ 1} = \frac{1}{f} \nabla_d f_b$$

and the others are zero, where $f_b = \nabla_b f$ and the range of indices a, b, c, \cdots is $\{2, 3, \cdots, n+1\}$. Hence the Ricci curvature tensors \tilde{S} and S for M and B respectively are given by

(3.2) $\tilde{S}_{cb} = S_{cb} - \frac{1}{f} (\nabla_c f_b), \qquad \tilde{S}_{c1} = 0, \qquad \tilde{S}_{11} = -f(\Delta f)$

where $\triangle f$ is the Laplacian of f with respect to g. The scalar curvatures \tilde{K} and K for M and B respectively are related by

(3.3)
$$\tilde{K} = K - \frac{2\triangle f}{f}.$$

If $M = B^n \times_f R^1$ is conharmonically flat warped product space, then, from (2.4), the Riemannian curvature tensor \tilde{R} on M is given by

(3.4)
$$\tilde{R}_{kji} \ ^{h} = \frac{1}{n-1} \left(\tilde{S}_{ji} \delta^{h}_{k} - \tilde{S}_{ki} \delta^{h}_{j} + \tilde{S}_{k} \ ^{h} \tilde{g}_{ji} - \tilde{S}_{j} \ ^{h} \tilde{g}_{ki} \right),$$

where the range of indices i, j, k, \cdots is $\{1, \cdots, n, n+1 = m\}$. Using (3.1), (3.2), (3.3) and (3.4), we get

(3.5)
$$R_{dcb}^{a} = \frac{1}{n-1} \left(S_{cb} \delta^{a}_{d} - S_{db} \delta^{a}_{c} + S_{d}^{a} g_{cb} - S_{c}^{a} g_{db} \right) \\ - \frac{1}{(n-1)f} \left(\delta^{a}_{d} \nabla_{c} f_{b} - \delta^{a}_{c} \nabla_{d} f_{b} + g_{cb} \nabla_{d} f^{a} - g_{db} \nabla_{c} f^{a} \right),$$

(3.6)
$$S_{cb} = Kg_{cb} - \frac{n-2}{f}\nabla_c f_b - \frac{\triangle f}{f}g_{cb},$$

(3.7)
$$K = \frac{2\triangle f}{f},$$

where $f^a = f_b g^{ba}$. Thus we obtain the following theorem([9]).

THEOREM 1. Let $M = B \times_f R$ be a conharmonically flat warped product space with n > 3 and $K_c \neq 0$. If K > 0, then B is a special conformally flat space.

If
$$M^m(m > 3)$$
 is conformally flat, from (2.1) and (2.3), then we see that
(3.8) $R_{kji}^{\ \ h} = \delta^h_j L_{ki} - \delta^h_k L_{ji} + L^h_j g_{ki} - L^h_k g_{ji}.$

Moreover if M is special conformally flat, using (2.5) and (3.8), then we have (3.9) $R_{kji}{}^{h} = \alpha^{2}(g_{ji}\delta^{h}_{k} - g_{ki}\delta^{h}_{j}) + \beta(\alpha_{k}\alpha_{i}\delta^{h}_{j} + \alpha_{j}\alpha^{h}g_{ki} - \alpha_{j}\alpha_{i}\delta^{h}_{k} - \alpha_{k}\alpha^{h}g_{ji}),$ where α and β are C^{∞} -functions on M and α is positive.

Conversely, if M has the curvature of the form (3.9), then we see that

(3.10)
$$S_{ji} = \alpha^2 (m-1)g_{ji} + \beta \{ (2-m)\alpha_j \alpha_i - \|\alpha_h\|^2 g_{ji} \}$$

(3.11)
$$K = (m-1)(m\alpha^2 - 2\beta \|\alpha_h\|^2).$$

Using (2.3), (3.10) and (3.11), we get

(3.12)
$$L_{ij} = -\frac{\alpha^2}{2}g_{ij} + \beta\alpha_i\alpha_j$$

Also, using (2.1), (3.9) and (3.10), we see that C = 0. Thus we have

THEOREM 2. A Riemannian manifold M^m is special conformally flat if and only if

$$R_{kji} \ ^{h} = \alpha^{2} (g_{ji} \delta^{h}_{k} - g_{ki} \delta^{h}_{j}) + \beta (\alpha_{k} \alpha_{i} \delta^{h}_{j} + \alpha_{j} \alpha^{h} g_{ki} - \alpha_{j} \alpha_{i} \delta^{h}_{k} - \alpha_{k} \alpha^{h} g_{ji}),$$

where m > 3, α and β are C^{∞} -functions on M and α is positive.

Let $M = B^n \times_f R^1$ be conharmonically flat. Then B is special conformally flat by Theorem 1. Thus B is conformally flat. Using (2.4), (3.6) and (3.7), we get

(3.13)
$$S_{cb} = \frac{K}{2}g_{cb} - \frac{n-2}{f}\nabla_c f_b.$$

The non-zero components of \widetilde{T} in (2.4) are given by

(3.14)
$$\widetilde{T}_{dcb}{}^{a} = R_{dcb}{}^{a} - \frac{1}{n-1} \{ (S_{cb} - \frac{1}{f} \nabla_{c} f_{b}) \delta^{a}_{d} + (S^{a}_{d} - \frac{1}{f} \nabla_{d} f^{a}) g_{cb} - (S_{db} - \frac{1}{f} \nabla_{d} f_{b}) \delta^{a}_{c} - (S^{a}_{c} - \frac{1}{f} \nabla_{c} f^{a}) g_{db} \},$$

(3.15)
$$\widetilde{T}_{d1b}^{-1} = \frac{n-2}{f(n-1)} \nabla_d f_b + \frac{1}{n-1} (S_{db} - \frac{\Delta f}{f} g_{db})$$

and the others are zero, where $\triangle f = \nabla_a f^a$. Therefore, we can see that

THEOREM 3. On $M = B^n \times_f R^1$, the followings are equivalent:

- (1) M is conharmonically flat.
- (2) B is conformally flat and (3.13) holds.
- (3) B is special conformally flat and (3.13) holds,

where n > 3 and K > 0.

Proof. By the above arguments, we see that (1) implies (3) and trivially (3) implies (2). Let B be conformally flat and satisfying the equation (3.13). Using (3.13), we see that all components of \tilde{T} vanishes. Thus M is conharmocally flat, that is (2) implies (1). Hence the proof is completed.

Using Theorem 3 and known examples of the special conformally flat space, we can construct new examples of the conharmonically flat space.

4. Special conformally flat warped product spaces

Let (B,g) and (F,\bar{g}) be Riemannian manifolds of dimensions n and p respectively, and f be a positive smooth function on B. Then the warped product space $M = B \times_f F$ is defined by the Riemannian metric $\tilde{g} = \pi^*(g) + (f \circ \pi)^2 \sigma^*(\bar{g})$, where π and σ the projections of $B \times F$ onto B and F respectively. In this case, the nonzero components of the Riemannian curvature tensor \tilde{R} of M are given by

(4.1)

$$\begin{array}{rcl}
\ddot{R}_{dcb} & a &= & R_{dcb} a, \\
\tilde{R}_{dxb} & y &= & \frac{1}{f} (\nabla_d f_b) \delta_x^y, \\
\tilde{R}_{xyz} & w &= & \bar{R}_{xyz} w - \|f_e\|^2 (\delta_x^w \bar{g}_{yz} - \delta_y^w \bar{g}_{xz}),
\end{array}$$

where the range of indices a, b, c, \cdots is $\{1, 2, \cdots, n\}$, and x, y, z, \cdots is $\{n+1, n+2, \cdots, n+p=m\}$.

The components of Ricci tensor \tilde{S} of M are given by ([2,8])

$$\begin{split} \tilde{S}_{cb} &= S_{cb} - \frac{p}{f} (\nabla_c f_b) \;, \\ \tilde{S}_{cx} &= 0 \;, \end{split}$$

(4.2)

$$\tilde{S}_{yx} = \bar{S}_{yx} - (p-1) \|f_e\|^2 \bar{g}_{yx} - f(\Delta f) \bar{g}_{yx}$$

Let \tilde{K} , K and \bar{K} be the scalar curvatures of M, B and F respectively, then we have

(4.3)
$$\tilde{K} = K + \frac{1}{f^2}\bar{K} - \frac{2p(\triangle f)}{f} - \frac{p(p-1)}{f^2} \|f_e\|^2.$$

Assume that $M = B \times_f F$ is conharmonically flat, then we get

(4.4)
$$\tilde{R}_{kji}^{\ h} = \frac{1}{m-2} \left(\tilde{S}_{ji} \delta^h_k - \tilde{S}_{ki} \delta^h_j + \tilde{S}_k^{\ h} \tilde{g}_{ji} - \tilde{S}_j^{\ h} \tilde{g}_{ki} \right).$$

Using (4.1), (4.2) and (4.4), we have

(4.5)
$$R_{dcb}^{\ a} = \frac{1}{m-2} \left(S_{cb} \delta^a_d - S_{db} \delta^a_c + S_d^{\ a} g_{cb} - S_c^{\ a} g_{db} \right) \\ - \frac{p}{(m-2)f} \left(\delta^a_d \nabla_c f_b - \delta^a_c \nabla_d f_b + g_{cb} \nabla_d f^a - g_{db} \nabla_c f^a \right).$$

Contracting (4.5) with respect to a and d, we obtain

(4.6)
$$S_{cb} = \frac{K}{p}g_{cb} - \frac{n-2}{f}\nabla_c f_b - \frac{\triangle f}{f}g_{cb}$$

and that

(4.7)
$$(n-p)fK = 2p(n-1)\triangle f.$$

Suppose that $n \neq p$, then we obtain

(4.8)
$$K = \frac{2p(n-1)}{f(n-p)} \triangle f$$

Using (4.5), (4.6) and (4.8), we see that

(4.9)
$$R_{dcb}^{\ a} = \frac{1}{n-2} \left(S_{cb} \delta^a_d - S_{db} \delta^a_c + S_d^{\ a} g_{cb} - S_c^{\ a} g_{db} \right) \\ - \frac{K}{(n-1)(n-2)} \left(g_{cb} \delta^a_d - g_{db} \delta^a_c \right) ,$$

that is B is conformally flat.

Using (2.3), (4.6) and (4.8), L on B is reduced to

(4.10)
$$L_{cb} = -\frac{g_{cb}}{2p(n-1)}K + \frac{1}{f}\nabla_c f_b \; .$$

If we put

$$\alpha = \sqrt{\frac{K}{p(n-1)}}, \qquad \beta = \frac{4p(n-1)K}{fK_cK_b}\nabla_c f_b$$

and considering (4.9) and (4.10), then we see that B is special conformally flat if $K_c \neq 0$. Hence, we have the following theorem.

THEOREM 4. Let $M = B \times_f F$ be a conharmonically flat warped product space with n > 3, $K_c \neq 0$ and $n \neq p$. If K > 0, then B is special conformally flat.

Let us consider the case of n = p. Then we get $\Delta f = 0$ from (4.7). Hence, if B is compact then f is constant by Hopf Theorem. Thus M is a Riemannian product manifold.

PROPOSITION 5. Let $M^m = B^n \times_f F^p$ be a conharmonically flat warped product space and n = p(> 1). If B is compact, then M is a Riemannian product manifold.

Since $\triangle f = 0$, we get, using (4.6),

(4.11)
$$S_{cb} = \frac{K}{n}g_{cb} - \frac{n-2}{f}\nabla_c f_b.$$

Then we can see that B is conformally flat by use of (4.5) and (4.11). In this case L is reduced to

(4.12)
$$L_{cb} = -\frac{K}{2n(n-1)}g_{cb} + \frac{1}{f}\nabla_c f_b.$$

If we put $\alpha = \sqrt{\frac{K}{n(n-1)}}$, $\beta = \frac{4n(n-1)K}{fK_cK_b}\nabla_c f_b$ and considering (4.12), then we see that *B* is special conformally flat if $K_c \neq 0$. Hence, we have

THEOREM 6. Let $M = B \times_f F$ be a conharmonically flat warped product space with n > 3, $K_c \neq 0$ and n = p. If K > 0, then B is special conformally flat.

If we combine Theorems 4 and 6, then we have

THEOREM 7. If $M = B \times_f F$ is a conharmonically flat warped product space with K > 0, n > 3 and $K_c \neq 0$, then B is special conformally flat.

502

Using (4.1), (4.2) and (4.4), we obtain

$$(4.13) \quad \bar{R}_{xyz} \ ^{w} = \|f_e\|^2 (\delta_x^w \bar{g}_{yz} - \delta_y^w \bar{g}_{xz}) + \frac{1}{m-2} \{ \bar{S}_{yz} \delta_x^w - \bar{S}_{xz} \delta_y^w + \bar{S}_x \ ^{w} \bar{g}_{yz} \\ -\bar{S}_y \ ^{w} \bar{g}_{xz} - 2(p-1) \|f_e\|^2 \bar{g}_{yz} \delta_x^w + 2(p-1) \|f_e\|^2 \bar{g}_{xz} \delta_y^w - 2f \Delta f \bar{g}_{yz} \delta_x^w + 2f \Delta f \bar{g}_{xz} \delta_y^w \}.$$

Contracting (4.13) with respect to x and w, we obtain

(4.14)
$$\bar{S}_{yz} = \frac{(n-p)(p-1)}{n} \|f_e\|^2 \bar{g}_{yz} + \frac{\bar{K}}{n} \bar{g}_{yz} + \frac{2(1-p)}{n} f \Delta f \bar{g}_{yz}.$$

which implies

(4.15)
$$f\Delta f = \frac{n-p}{2p(1-p)}\bar{K} + \frac{n-p}{2}||f_e||^2$$

and that

(4.16)
$$\bar{S}_{yz} = \frac{\bar{K}}{p}\bar{g}_{yz}.$$

Thus F is Einstein if \overline{K} is constant. Using (4.13) and (4.16), we see that

(4.17)
$$\bar{R}_{xyz} \ ^w = \frac{K}{p(p-1)} (\bar{g}_{yz} \delta^w_x - \bar{g}_{xz} \delta^w_y)$$

where $p \neq 1$. Thus F is a space of constant curvature. Therefore we have the following theorem.

THEOREM 8. Let $M = B \times_f F$ be a conharmonically flat warped product space with $p \neq 1$. Then F is a space of constant curvature if \overline{K} is constant. The condition \overline{K} is constant is necessary only for p = 2.

Let M^m be a space of constant curvature with $m \ge 3$. Then M is conformally flat and Einstein, that is $S_{ij} = \frac{\widetilde{K}}{m}g_{ij}$. Hence L on M^m is reduced to

(4.18)
$$L_{ij} = -\frac{K}{2m(m-1)}g_{ij}.$$

If we put $\alpha = \sqrt{\frac{\widetilde{K}}{m(m-1)}}$ and considering (2.5) and (4.18), then we see that M is special conformally flat with $\beta = 0$.

LEMMA 9. Let M be a space of constant curvature with $\widetilde{K} > 0$, then M is special conformally flat.

Finally, if we consider Theorem 8 and Lemma 9, then we have

THEOREM 10. Let $M = B \times_f F$ be a conharmonically flat warped product space with $p \geq 3$. If $\bar{K} > 0$, then F is special conformally flat.

References

- 1. A. Besse, *Einstein manifolds*, Springer-Verlag, Berlin(1987).
- R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. AMS., 145(1969), 1-49.
- 3. B. Y. Chen, Geometry of submanifolds, Marcel Dekker, New York, (1973).
- B. Y. Chen and K. Yano, Special conformally flat spaces and canal hypersurfaces, Tohoku Math.J., 25(1973), 177-184.
- 5. Y. Ishi, On conharmonic transformation, Tensor N.S 7(1957), 73-80.
- 6. B. Kagan, Sur les *ėspaces sour-projectifs*, C. R., 191(1930), 548-550.
- B. Kagan, Über eine Erweiterung des Begriffes vom projektiven Räume und dem zugehörigen Absolut, Abh. des sem für Vektor und Tensor analysis, Moskau, 1 (1933), 12-101.
- 8. B. H. Kim, Warped products with critical Riemannian metric, Proc. Japan Academy, 71(1995), 117-118.
- 9. B. H. Kim, J. H. Choi and Y. O. Lee, *Remarks on conformal transformation on Riemannian manifold*, J. Applied Math. and Informations, 27 (2009), 857-864.

Byung Hak Kim received Ph.D at Hiroshima University. His research area include differential geometry and global analysis.

Department of Applied Mathematics, Kyung Hee University, Suwon 446-701, Korea e-mail: bhkim@khu.ac.kr

Sang Deok Lee received Ph.D at Kyung Hee University. His research area include differential geometry.

Department of Applied Mathematics, Dankook University, Cheonan 330-714, Korea e-mail: sdlee@dankook.ac.kr

Jin Hyuk Choi received Ph.D at Kyung Hee University. His research area include differential geometry.

College of Liberal Arts, Kyung Hee University, Suwon 446-701, Korea e-mail: jinhchoi@khu.ac.kr

Young Ok Lee received Ph.D at Chungbuk National University. His research area include differential geometry.

Department of Mathematics, Chungbuk National University, Cheongju 361-763 Korea e-mail: ylee6604@korea.com

504