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DEGREE BOUND FOR EVALUATION OF ALGEBRAIC

FUNCTIONS†

SUNG WOO CHOI

Abstract. We give a constructive proof that a (partial) evaluation of a
multivariate algebraic function with algebraic numbers is again an algebraic
function. Especially, we obtain a bound on the degree of an evaluation with
the degrees of the original algebraic function and the algebraic numbers
evaluated. Furthermore, we show that our bound is sharp with an example.
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1. Introduction

Algebraic functions form an important class of functions in many areas of
mathematics([1, 2, 3]). While they are general enough to encompass many use-
ful functions, they also share a lot of nice properties with polynomials, such
as closedness under various operations. Recently, concrete bounds for alge-
braic functions in general have become important in relation to computational
purposes([4]). Especially, the field of exact computation([5]) uses various bounds
for algebraic functions on their degrees and heights.

In this paper, we deal with the case when a multivariate algebraic function
yields another algebraic function, called an evaluation, by way of evaluating
some of its arguments with given algebraic numbers. The fact that an evaluation
of an algebraic function is itself an algebraic function needs to be proved. We
prove this fact by explicitly constructing the minimal polynomial of the resulting
evaluation. The constructed minimal polynomial also gives us a concrete degree
bound of the evaluation, in terms of the degree of the original algebraic function
and those of the algebraic numbers evaluated. Moreover, we show that our
bound is sharp with an example.
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2. Algebraic Functions

Let D be an integral domain, and let α be an element of an extension E of
D. Let D[x] be the ring of polynomials in one indeterminate x with coefficients
in D. α is called algebraic (over D), if there exists a nonzero P ∈ D[x] such
that P (α) = 0. Here P is called a generating polynomial of α. A generating
polynomial irreducible over D[x], and hence with the minimal degree, is called
the minimal polynomial of α, which is unique up to units in D. The degree of
α, denoted deg(α), is the degree of its minimal polynomial. The extension of D
by α, denoted D[α], is defined to be the smallest integral domain containing D
and α. It is easy to see that

D[α] = {P (α) |P ∈ D[x]} = {P (α) |P ∈ D[x], deg(P ) < deg(α)} ,
so that [D[α] : D] = deg(α), where [D[α] : D] is the extension degree of D[α]
over D which is the dimension of D[α] as a D-module.

Let Z be the set of integers, and let C be the set of complex numbers. Consider
the case when D = Z. A number α is called an algebraic number, if it is algebraic
over Z. The set of all algebraic numbers, denoted by A, is a proper subset of C.

A (complex-valued) function f(x) in one complex variable is an algebraic
function, if there exists a nonzero F (x, y) ∈ Z[x][y] such that F (x, f(x)) = 0 for
every definable x. The degree, deg(f), of f is the minimal y-degree of such F .
Thus f is an algebraic function, if and only if f is algebraic over Z[x]. Note also
that deg(f) = [Z[x][f ] : Z[x]].

Finally, a (complex-valued) function f (x1, . . . , xn) in several complex vari-
ables x1, . . . , xn is called a multivariate algebraic function, or just an algebraic
function, if there exists a nonzero F ∈ Z [x1, . . . , xn] [y] such that

F (x1, . . . , xn, f (x1, . . . , xn)) = 0

for every definable (x1, . . . , xn). Again, f is a multivariate algebraic function if
and only if f is algebraic over Z [x1, . . . , xn], and

deg(f) = [Z [x1, . . . , xn] [f ] : Z [x1, . . . , xn]] .

3. Evaluation of Algebraic Functions

Let f (x1, . . . , xn) be an algebraic function, and let cr+1, . . . , cn be algebraic
numbers. The function

fcr+1,...,cn(x1, . . . , xr) := f(x1, . . . , xr, cr+1, . . . , cn)

in r variables x1, . . . , xr is called the evaluation of f at cr+1, . . . , cn.

Lemma 1. Let f (x1, . . . , xn) be an algebraic function, and let c be an algebraic
number. Let fc (x1, . . . , xn−1) := f (x1, . . . , xn−1, c) be the evaluation of f at c.
Then fc is an algebraic function, and deg (fc) ≤ deg(f) · deg(c).
Proof. Let d = deg(f), and let P (x1, . . . , xn, y) =

∑d
j=0 aj (x1, . . . , xn) y

j in

Z [x1, . . . , xn] [y] be the minimal polynomial of f . We first deal with the case
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when f is constant. If f has a constant value k, then it is easy to see that P
is just the minimal polynomial in Z[y] of the algebraic number k. P is also the
minimal polynomial of the evaluation fc, which has the constant value k. So we
have deg(fc) = deg(f), and the desired result holds in this case.

For the rest of proof, we assume that f is nonconstant. From the definition
of fc, we have

0 = P (x1, . . . , xn−1, c, f (x1, . . . , xn−1, c))

=

d∑

j=0

aj (x1, . . . , xn−1, c) f (x1, . . . , xn−1, c)
j

=

d∑

j=0

ajc (x1, . . . , xn−1) fc (x1, . . . , xn−1)
j
,

for every definable (x1, . . . , xn−1). Here,

ajc (x1, . . . , xn−1) := aj (x1, . . . , xn−1, c)

is the evaluation of aj at c for 0 ≤ j ≤ d.
We first claim that at least one of ajc, 0 ≤ j ≤ d, is nonzero, where we regard

these ajc’s as elements in the extension field Z (x1, . . . , xn−1) [c]. Let Q(y) ∈ Z[y]
be the minimal polynomial of the algebraic number c. Note that Q can be
regarded as the minimal polynomial Q (x1, . . . , xn−1, y) in Z [x1, . . . , xn−1] [y] of
the constant function c = c (x1, . . . , xn−1) ∈ Z [x1, . . . , xn−1] [c]. Now suppose
that ajc is zero for every 0 ≤ j ≤ d. Then

ajc (x1, . . . , xn−1) = aj (x1, . . . , xn−1, c) = 0,

for every definable (x1, . . . , xn−1). This implies that every aj has the nontrivial
factor Q, and hence P should have the nontrivial factor Q. Since P is minimal,
we must have P = Q, which involves only the y variable. But this implies that
f is constant, which contradicts the assumption that f is nonconstant. Thus
there exists at least one 0 ≤ j ≤ d such that ajc is nonzero.

Let d̃ be the largest among such j’s. Then we have

d̃∑

j=0

ajc (x1, . . . , xn−1) fc (x1, . . . , xn−1)
j
= 0,

for every definable (x1, . . . , xn−1). Since ad̃cis a nonzero element of the extension

field Z (x1, . . . , xn−1) [c], there exists the inverse ad̃
−1
c

of ad̃c in Z (x1, . . . , xn−1) [c],
so that

ad̃
−1
c

(x1, . . . , xn−1) =

deg(c)−1∑

i=0

bi (x1, . . . , xn−1) c
i,

for some bi ∈ Z (x1, . . . , xn−1), 0 ≤ i < deg(c).
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Let−→v = −→v (x1, . . . , xn−1) be the
(
deg(c)d̃

)
-dimensional column vector whose

elements are

vi;j = ci · fc (x1, . . . , xn−1)
j
, 0 ≤ i < deg(c), 0 ≤ j < d̃.

Consider fc (x1, . . . , xn−1) · vi;j . When 0 ≤ j < d̃− 1, we have

fc (x1, . . . , xn−1) · vi;j = ci · fc (x1, . . . , xn−1)
j+1

= vi;j+1.

When j = d̃− 1, we have

fc (x1, . . . , xn−1) · vi;j
= ci · fc (x1, . . . , xn−1)

d̃

= −ci · ad̃−1
c

(x1, . . . , xn−1)

d̃−1∑

j=0

ajc (x1, . . . , xn−1) fc (x1, . . . , xn−1)
j

= −ci ·
deg(c)−1∑

k=0

bk (x1, . . . , xn−1) c
k ·

d̃−1∑

j=0

ajc (x1, . . . , xn−1) fc (x1, . . . , xn−1)
j

=

deg(c)−1∑

l=0

d̃−1∑

j=0

b̃l;j (x1, . . . , xn−1) · vl;j ,

for some b̃l;j ∈ Z(x1, . . . , xr), 0 ≤ l < deg(c), 0 ≤ j < d̃. It follows that

there exists a
(
deg(c)d̃

)
-dimensional square matrix M = M (x1, . . . , xn−1) ∈

gl
(
deg(c)d̃,Z (x1, . . . , xn−1)

)
such that

M (x1, . . . , xn−1)
−→v (x1, . . . , xn−1) = fc (x1, . . . , xn−1)

−→v (x1, . . . , xn−1) .

So H̃ (x1, . . . , xn−1, fc (x1, . . . , xn−1)) = 0 for every definable (x1, . . . , xn−1),

where H̃ (x1, . . . , xn−1, y) := det (M (x1, . . . , xn−1)− yI) ∈ Z (x1, . . . , xn−1) [y].

Multiplying H̃ with appropriate b ∈ Z [x1, . . . , xn−1], we get H (x1, . . . , xn−1, y)

:= b (x1, . . . , xn−1) H̃ (x1, . . . , xn−1, y) in Z [x1, . . . , xn−1, y], so that

H (x1, . . . , xn−1, fc (x1, . . . , xn−1)) = 0,

for every definable (x1, . . . , xn−1). Thus H is a generating polynomial of fc, and
hence fc is algebraic. Moreover, we also obtain

deg(fc) ≤ degy(H) ≤ deg(c)d̃ ≤ deg(c)d = deg(f) · deg(c),
which competes the proof. ¤

With iterative use of Lemma 1, we immediately obtain the following main
result.

Theorem 1 (Degree Bound for Evaluation). Let f (x1, . . . , xn) be an algebraic
function, and let cr+1, . . . , cn be algebraic numbers. Let

fcr+1,...,cn (x1, . . . , xr) := f (x1, . . . , xr, cr+1, . . . , cn)
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be the evaluation of f at cr+1, . . . , cn. Then fcr+1,...,cn is an algebraic function,
and we have

deg
(
fcr+1,...,cn

) ≤ deg(f) ·
n∏

i=r+1

deg(ci).

We will show that, in fact, the bound in Theorem 1 is sharp, which means
that there exists an example realizing the equality of the bound. To see this
fact, we consider the following example: Define f(x1, x2) =

√
x2
1 + x2, which

clearly is an algebraic function. It is easy to see that its minimal polynomial
is F (x1, x2, y) = y2 − x2

1 − x2, and hence deg(f) = 2. Let c =
√
2, which is

an algebraic number with deg(c) = 2. The evaluation fc(x1) := f(x1, c) of f

at c is fc(x1) =
√
x2
1 +

√
2. Consider the generating polynomial G(x1, y) =

(
y2 − x2

1

)2 − 2 = y4 − 2x2
1y

2 + x4
1 − 2 of fc. We show in the following lemma

that G is irreducible in Z [x1, y], and hence G is the minimal polynomial of fc.

Lemma 2. G(x1, y) = y4 − 2x2
1y

2 + x4
1 − 2 is irreducible in Z [x1, y].

Proof. Suppose G is reducible in Z [x1, y]. Then G has a factor in Z [x1, y] whose
y-degree is either 1, or 2.

(Case 1) When G has a factor with y-degree 1: There exist a(x1), b(x1), c(x1),
d(x1) in Z[x1], such that

y4 − 2x2
1y

2 + x4
1 − 2 = (y + a)

(
y3 + by2 + cy + d

)

= y4 + (a+ b)y3 + (ab+ c)y2 + (ac+ d)y + ad.

First, we have a+ b = 0, and so b = −a. Hence ab+ c = −a2 + c = −2x2
1, and

so c = a2 − 2x2
1. Now ac+ d = a(a2 − 2x2

1) + d = 0, and so d = −a(a2 − 2x2
1) .

Finally, we get ad = −a2(a2−2x2
1) = x4

1−2. Since x4
1−2 is irreducible in Z[x1],

we must have a = ±1. The we have −(±1)2 · ((±1)2 − 2x2
1

)
= x4

1 − 2, which is
a contradiction.

(Case 2) When G has a factor with y-degree 2: There exist a(x1), b(x1), c(x1),
d(x1) in Z[x1], such that

y4 − 2x2
1y

2 + x4
1 − 2 = (y2 + ay + b)(y2 + cy + d)

= y4 + (a+ c)y3 + (b+ d+ ac)y2 + (ad+ bc)y + bd.

First, a+ c = 0, and so c = −a. Hence ad+ bc = a(d− b) = 0, and so we have
either a = 0 or b = d.

Suppose a = 0. Then c = −a = 0, and b+d+ac = b+d = −2x2
1, bd = x4

1−2.
It follows that bd = −b(b+2x2

1) = x4
1−2. Since x4

1−2 is irreducible in Z[x1], we
have either b = ±1, in which case −(±1) · (±1+ 2x2

1) = x4
1 − 2, or b+2x2

1 = ±1,
in which case −(−2x2

1 ± 1) · (±1) = x4
1 − 2. But both cases are impossible.

Now suppose b = d. Then bd = b2 = x4
1 − 2, which is impossible since x4

1 − 2
is irreducible in Z[x1].

Thus all the exhausting cases are impossible, which proves that G is irre-
ducible in Z [x1, y]. ¤
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From Lemma 2, we have deg (fc) = degy(G) = 4 = 2 · 2 = deg(c) deg(f),
which shows the following sharpness result of our bound.

Theorem 2 (Sharpness of The Degree Bound). The bound in Theorem 1 is
sharp.
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